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Abstract 

The purpose of the paper is to revisit the inflation – outputgap relationship using a new 

approach known as the wavelet transform. This approach combines the classical time series 

analysis with frequency domain analysis and presents the advantages of assessing the co-

movement of the two series in the context of both time and frequencies. Using discrete and 

continuous wavelet methodologies for study of the inflation – output gap nexus in the case of 

France, we determine that the output gap is able to predict the inflation dynamics in the short- 

and medium-runs, and these results have important implications to the Phillips curve theory. 

More precisely, we discovered that in a discrete wavelet framework, the short- and medium-

term fluctuations of both variables are more closely correlated, whereas the continuous 

wavelet analysis states that the output gap leads inflation in short-run. 
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1. Introduction 

Analysis of the relationship between inflation and the output gap (or economic 

activity) has been a constant topic in macroeconomics for half a century. Indeed, this 

relationship plays a fundamental role in the policy-making process, thereby justifying the 

major interest of academics and policy-makers in assessing the mechanisms of 

interdependence between these two macroeconomic variables. Despite the large body of 

literature on this topic, no unitary vision exists to describe the exact structure of this complex 
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relationship. The explanations of this bilateral relationship have evolved over time according 

to different theoretical and methodological backgrounds, as well as the cyclical evolution of 

macroeconomic variables. 

The first formal analysis of this relationship was developed in 1958 by Philips, who 

fit a statistical equation for the change in nominal wages and the unemployment rate in the 

UK and found a stable negative short-run relationship between these variables. To render this 

technique more useful to policymakers, the original version of the Phillips curve was 

transformed from a wage-change equation to a price-change equation (Claus, 2000), and the 

unemployment gap was adopted to reflect the view that economic fluctuations are the result 

of both demand and supply shocks. However, instead of the unemployment gap, the output 

gap is often included as a measure of excess demand in Phillips curve analysis (Claus, 2000).  

From an empirical point of view, the original Philips curve, which provides a short-run trade-

off between inflation and output, was invalidated in 1970 per the stagflation phenomenon that 

followed the oil crisis. From a theoretical point of view, this idea was first challenged by 

Phelps (1967) and Friedman (1968), who argued using adaptive expectations that the 

apparent trade-off between inflation and output would tend to be a temporary phenomenon. 

The development of rational expectations theory has represented an important step in 

analysing the inflation-output gap relationship. Indeed, according to the Lucas critique, the 

agents are able to build correct expectations of future inflation, and consequently, there is no 

trade-off between inflation and output gap even in the short-run.  

Structural models were subsequently developed, and the New Keynesian Phillips 

Curve (NKPC) became the main foundation for inflation – output gap analysis. These models 

are micro-founded and consider sticky prices and purely forward-looking inflation 

expectations. Variants of the NKPC depend on the choice of price-setting models and on the 

measure of real marginal costs (see Montoya and Döhring, 2011). For example, Roberts 

(1995) considered that the aggregate real marginal cost is proportional to the output gap 

measured using de-trending techniques.  

However, despite the well-defined theoretical framework of the NKPC, empirical 

evidence has not supported the presumptions of the model with respect to the role of the 

output gap and expectations in explaining inflation dynamics (Abbas and Sgro, 2011). One 

shortcoming of the NKPC was associated with an immediate response of inflation to 

monetary policy shocks. By considering selected backward-looking behaviour, Galí and 

Gertler (1999) developed the so-called hybrid NKPC. Thus, hybrid models emerged that nest 



the traditional Phillips curve (backward-looking) and the NKPC (forward-looking)
1
. In 

addition, the real marginal cost is the theoretically appropriate measure of real sector 

inflationary pressures as opposed to the cyclical measures used in traditional Phillips curve 

analysis, such as de-trended output or unemployment (Galí et al., 2001). 

Nevertheless, the role of the output gap in explaining inflation dynamics cannot be 

neglected in the NKPC (Paul, 2009; Zhang and Murasawa, 2011; Montoya and Döhring, 

2011). Consequently, a series of studies focused on the changes in the output gap rather than 

the level of the output gap, or the so-called “speed limit effect”. A speed limit effect exists 

when the change in the output gap causes inflation to increase even if the level of the output 

gap is negative. When a negative output gap closes and the change in the output gap is 

positive as growth increases, upward pressure on inflation may occur.  

Empirical evidence of speed limit effects is mixed. For example, Lown and Rich 

(1997) found a statistically significant rate of change effect for the output gap in the 

estimation of a price-inflation Phillips curve for the US over the period 1965-1996, whereas 

Dwyer et al. (2010) found rather limited evidence of the speed limit effect for the UK over 

the period 1980-2010.  

Another development in this area considers the nonlinearities of the inflation – output 

gap nexus. The majority of analyses using Phillips curves are based on the assumption that 

the trade-off between inflation and activity is linear and symmetric. However, it is possible 

that the magnitude of effects from the level and the change of the output gap depend on the 

sign of the output gap such that the relationship is asymmetric. 

The concept underlying the output gap’s role in explaining inflation dynamics is that, 

due to the presence of short-term price rigidities, demand shocks provoke a supply reaction 

that causes the actual and potential outputs to differ. However, these differences (i.e., an 

output gap different from zero) cannot last in the long term and will trigger a price adjustment 

process to restore equilibrium (Bolt and van Els, 2000). Several studies in this direction 

include those of Laxton et al. (1999), which imposed a mode convexity for estimating the 

Phillips curve, Céspedes et al. (2005), which analysed structural breaks in NKPC, and Baghli 

et al. (2007), which studied the asymmetries with respect to the output – inflation trade-off in 
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the Euro area. In the same line and more recently, Komlan (2013) tested for the presence of 

nonlinearities with respect to the output gap in the central bank policy reaction function.  

The potential output is sometimes also defined as the output level in a situation of stable 

inflation, and thus, an output gap may also be viewed as a tension variable that leads 

inflation. Consequently, another body of literature has focused on output gap estimation (i.e., 

Gerlach and Peng, 2006). The continuously growing literature on this subject relates to the 

difficulty of deriving an output gap because potential output is an unobserved variable
2
. 

Nevertheless, regardless of the method of assessing the output gap, the empirical 

results do not always validate the theoretical background of the inflation – output gap 

relationship
3
. This effect is sometimes due to the empirical approaches, such the frequently 

used GMM estimator
4
. The GMM is a well-known approach used to study the Philips Curve, 

but at the same time, it is associated with small-sample problems and the choice of 

appropriate instruments (Dees et al., 2008; Tillmann, 2009). Moreover, the frequently used 

econometric approaches ignore the non-stationary characteristic of the variables
5
.  

To overcome the limitations of non-stationary data, Ashley and Verbrugge (2006), 

Assenmacher-Wescheand Gerlach (2008a; 2008b) and more recently, Haug and Dewald 

(2012) propose a frequency-domain analysis that combines the Phillips curve and the 

macroeconomic variable co-movement theories to test the relationship between money 

growth, output gap and inflation. The frequency-domain methods explore the high- and low-

frequency components of the variables and interpret the results in terms of frequency bands 

rather than time horizons. Similarly, Assenmacher-Wesche and Gerlach (2007) used the band 

spectral estimator
6
 for non-stationary data and proved a one-to-one relationship between 
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inflation and money growth at low frequencies and between inflation and output gap at high 

frequencies. 

However, in losing the time-information, the frequency-domain methods present 

important limits. Although it allows quantification of co-movement at the frequency level, 

such a measure disregards the potential evolution of the co-movement over time (Rua, 2010). 

A new methodology used in economics known as wavelet analysis combines time and 

frequency domain analyses and is more appropriate for assessing the output gap role in 

inflation dynamics (see Rua, 2010 for an exhaustive description of the methodology). As 

shown by Mitra and al. (2011), an important aspect of wavelets is that they are localised in 

time and space and can be considered as a refinement of Fourier analysis. 

Despite the growing literature using wavelets in economics and finance
7
, none of the 

previous studies have explicitly focused on the output gap – inflation nexus. The aim of our 

paper is to examine the relationship between inflation and the output gap using wavelet 

analysis to simultaneously assess how variables are related at different frequencies and how 

such a relationship has evolved over time by capturing the non-stationary features. Moreover, 

our study uses both discrete and continuous wavelet methodologies to better understand the 

structure of the co-movement between these two macroeconomic variables. The use of 

discrete wavelet analysis allows us to avoid non-stationarity problems, whereas the 

continuous wavelet approach allows us to estimate the correlation degree of the variables. 

Another important contribution of our research is related to the analysis of the French 

case. With the founding of the European Monetary Union (EMU), many studies have focused 

on analysing the relationship between inflation and the output gap at the aggregate Euro area 

level
8
, leaving out the case of large European economies, such as France. The few studies that 

approach the French case are those of Jondeau and Pelgrin (2009) and Imbs et al. (2011), 

which developed a heterogeneity-correcting estimation technique and applied it to sector data 

to assess the hybrid NKPC. Along the same lines, Crédit Agricole (2009) discovered a 

positive role for output gap pressures in influencing the inflation in France.  

Study of the French case can be interesting for at least two main reasons. First, France 

is a large developed country that has maintained a stable economy for more than half a 
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century and whose long-run statistical data are available and reliable. Thus, France can serve 

as a reliable benchmark for implementing new methodological tools to examine the structure 

of the inflation – output gap relationship as well as its evolution over time. 

Second, France has experienced a particular evolution of its inflation phenomenon during the 

first stage of the actual global crisis. Indeed, for the first time since 1957, the annual inflation 

rate became negative in 2009. These recent and appealing dynamics of the inflation in France 

reinforce the interest in a close analysis of the inflation – output gap relationship, which could 

provide relevant explanations according to a distinction between the long- and short-run 

dynamics of those macroeconomic variables. 

The remainder of the paper is structured as follows. Section two describes the discrete and the 

continuous wavelet methodology and the data. Section three is dedicated to the data 

description and to results analysis. The last section provides conclusions.  

 

2. Methodology 

 

As we have shown, the majority of the research on the output gap – inflation 

relationship has concentrated on the time – domain approach. Only a few analyses of the 

output gap – inflation nexus that were carried out in the frequency domain can be found in 

the literature. Therefore, this work represents an important contribution to the literature 

because the relationship between variables may exist at different frequencies: short, medium 

and long frequencies. We refer to Fourier analysis, which allows us to study the cyclical 

nature of a time series in the frequency domain.  

In spite of its utility, the time information of a time series is lost under the Fourier 

transform, making it difficult to discriminate among ephemeral relationships or to identify 

structural changes that are rather essential for macroeconomic variables. As Rua (2010) 

showed, a caveat of the windowed Fourier transform is that the window width and thus the 

time resolution are constant for all frequencies. Another important argument against the 

application of Fourier transforms is the reliability of the results. According to the assumption 

of this approach, non-stationary data are not valid for implementation of this approach.  

To overcome this obstacle, Gabor (1946) introduced the short-time Fourier transform 

(STFR) in which the time series are classified into smaller sub-samples and applied this 

transformation to each sub-sample. The STFR is time- and frequency-localized, but certain 

issues remain with the frequency-time resolution trade-off. The limitation of this approach is 

related to its efficiency with respect to the correct choice of the window and its constancy 



over time because it applies an equal frequency resolution across all dissimilar frequencies 

(Raihan et al., 2005). This transform does not allow for any time dependence of the signal. 

Therefore, this approach cannot provide any information on the time evolution of its spectral 

characteristics.  

The wavelet approach was proposed in the 1980s by Grossmann and Morlet (1984) 

and Goupillaud et al. (1984) to address the limitations of the Fourier transform. This 

approach uses local base functions that can be stretched and translated with flexible 

resolution in both frequency and time (Rua, 2010)
9
. More precisely, the wavelet transform 

routinely allows adjustments in the high or low frequencies, with a short window for high 

frequencies and a long window for lower frequencies. In this context, time compression or 

dilatation is applied rather than a variation of frequency in the modulated signal. According 

to Aguiar-Conraria and Soares (2011b), the major advantage of the wavelet transform is its 

ability to perform local analysis of a time-series because the length of wavelets varies 

endogenously.  

Mathematically, as Tiwari et al. (2013a) show, the wavelet transform includes two 

types of wavelet, namely, the father wavelets φ , which operate with the low frequency-

flattened components of a signal (the trend components),and the mother wavelets ψ , which 

use the high-frequency details components (all of the deviation from the trend): 

Father wavelets    ∫ = 1)( dttφ , and 

Mother wavelets     ∫ = 0)( dttψ . 

Under the wavelet transform, a time-series )(tf  can be decomposed as follows: 

 ∑∑ +=
k

kJkJ

k

kJkJ dtstf ,,,, )()( ψφ )(.......)()( ,1,1,1,1 tdtdt
k k

kkkJkJ∑ ∑+++ −− ψψ  (1) 

where J  represents the number of multi-resolution levels, and k describes the ranges from 1 

to the number of coefficients in each level. The coefficients kJs , , kJd , ,..., d k,1 are the wavelet 

transform coefficients and )(, tkJφ and )(, tkjψ  illustrate the approximated wavelets functions. 

The wavelet transforms become: 

     ∫= dttfts kJkJ )()(,, φ      (2) 

    ∫= dttftd kjkj )()(,, ψ , for j=1,2,…….J   (3) 
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where J  describes the maximum integer such that 
J2 has a value less than the number of 

observations.  

The coefficients kJd , ,….., d k,1  reveal an increasingly finer scale deviation from the 

smooth trend, and kJs , is the smooth coefficient that captures the trend. As a consequence, the 

initial )(tf series under a wavelet approximation can be expressed as follows: 

   )(.....)()()()( 1,1,, tDtDtDtStf kJkJkJ ++++= −    (4) 

where kJS ,  indicates the smooth signal and kJD , , kJD ,1− , kJD ,2− …. kD ,1  indicate the detailed 

signals.  

These smooth and detailed signals can be written as follows: 

),(,,, tsS kJ

k

kJkJ φ∑= )(,,, tdD kJ

k

kJkJ ψ∑= and ),(,1,1,1 tdD k

k

kk ψ∑= 1,....,2,1 −= Jj  (5) 

The kJS , , kJD , , kJD ,1− , kJD ,2− …. kD ,1 are listed in increasing order of the finer scale 

components. 

Wavelet transforms are broadly divided into three classes: discrete, continuous and 

fast wavelets. In economics and finance, wavelet analyses are mostly limited to the 

implementation of one or several variants of the discrete wavelet transform (DWT)due to the 

simplicity of the DWT and the advantages for data decomposition of many variables at the 

same time.  

Most recently, tools associated with the continuous wavelet transform (CWT) have 

become more widely used. The CWT methodology was not popular in economics because it 

was based only on two-variable analysis. Currently, new advancements allow the use of more 

than two variables (known as conditioning variables) and make the CWT a rather attractive 

approach. The CWT is computationally complex and contains a high amount of redundant 

information (Gençay et al., 2002), which is also rather finely detailed.  

We must state that the discrete variant of the wavelet transform is grounded on the 

same concepts as the CWT. However, a complementarity exists between the DWT and CWT, 

which recommends the use of the two approaches to obtain robust results. Each of the two 

methods presents specific advantages and drawbacks. 

For example, the DWT is thought to be more parsimonious because it uses a limited 

number of translated and dilated versions of the mother wavelet to decompose a given signal 

(Gençay et al., 2002). Therefore, we obtain no redundant information from this method. 

Nevertheless, various constraints must be considered if applying discrete wavelet analysis, 



including the level of decomposition, the type of wavelet transform that must be used and 

how the bound conditions at the end of the series are to be handled. 

In contrast, the CWT returns an array that is one dimension larger than the input data. 

With the CWT, the variation in the time series data can be obtained more easily. Based on a 

single diagram, one can immediately conclude the evolution of the variable variances at 

several time scales. However, because used a non-orthogonal set of wavelets is used, the data 

are highly correlated, and thus a larger redundancy is found. Moreover, the CWT is an 

implementation of a wavelet transform that uses arbitrary scales and nearly arbitrary 

wavelets. All of these observations recommend the use of both approaches due to their 

complementary natures. The DWT and CWT methodologies are described below. 

 

2.1. The discrete wavelet approach 

 

According to Daubechies (1992), the wavelet filter coefficients are 

T

Lhhh )0,...,0,...,( 1,10,11 −= , which compactly supports the Daubechies wavelet unit scale and is 

zero-padded to length N. 

By this definition, we consider 0,1 =jh for Ll > . In addition, the wavelet filter must 

satisfy three properties: 

0;1;0
1

0

2,1,1

1

0

2

,1

1

0

,1 === ∑∑∑
−

=

+

−

=

−

=

L

l

nll

L

l

l

L

i
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Based on these conditions, the wavelet filter must sum to zero (have a zero mean), 

must have unit energy and must be orthogonal to its even shifts. 

Consider 
T

Lggg )0,...,0,...,( 1,10,11 −= as the zero-padded scaling filter coefficients, which are 

defined via 11,1

1

,1 )1( −−
+−= L

l

l hg , and let 10 ,..., −Nxx  be a time-series. For scales with ,jLN ≥  

where ,1)1)(12( +−−= LL
j

j  to obtain the wavelet coefficients, the time-series can be 

filtered using jh : 
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The tjW ,

~
 associated coefficients with changes on a scale of length 

12 −= j

jτ  are 

performed by sub-sampling every th
j2  of the tjW ,

~
 coefficients. 

Two main drawbacks characterise the orthogonal discrete wavelet transform: the 

dyadic length requirement (i.e., a sample size divisible by j2 ) and the wavelet and scaling 

coefficients, which are not shift-invariant as a result of their sensitivity to circular shifts 

(involving a decimation operation). To overcome these limitations, the maximal overlap 

DWT (MODWT) approach is proposed, which represents a type of compromise between the 

DWT and the CWT. 

The MODWT, which is a non-orthogonal variant of the DWT, does not decimate the 

coefficients, and the number of scaling and wavelet coefficients at every level of transform is 

the same as the number of sample observations. Even if the MODWT loses orthogonality and 

efficiency in computation, this approach does not contain limitations for any sample size and 

is shift-invariant. The wavelet coefficients tjw ,
~ and scaling coefficients tjV ,

~
 at levels 

,,...,1; Jjj =  are: 

Ntj

L

l

itj

L

l

Ntjltj vhvandvgW mod1,1

1

0
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~~~~~~
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The wavelet and scaling filters ll hg
~

,~
 are rescaled as

2/2/ 2/
~

,2/~ j

jj

j

jj hhgg == . The 

differences between the generalised averages of the scale data 
12 −= jτ  are non-decimated 

wavelet coefficients. Moreover, an extra benefit is also generated by the MODWT because it 

provides for all functions of the DWT (e.g., the MODWT can handle any sample size, is 

translation-invariant, and can provide an increase in resolution at coarser scales).In the 

wavelet correlation analysis, we also note that the MODWT offers a larger sample size and 

produces a more asymptotically efficient wavelet covariance estimator than the DWT. 

 

2.2. The continuous wavelet approach 

 

Application of the discrete wavelet analysis depends on the level of decomposition. 

Therefore, the findings of this approach can be difficult to understand and interpret. The 

continuous transform performs better than the discrete wavelet transform in this situation. 

Indeed, according to Aguiar-Conraria et al. (2008), the economic applications of the 



(discrete) wavelet transform have mainly involved use as low and high pass filters. Moreover, 

with the DWT, it is difficult to simultaneously analyse two (or more) time series variables. 

Consequently, the CWT represents a reliable analysis of the time frequency dependencies 

between two time series. In addition, Hudgins et al. (1993) and Torrence and Compo (1998) 

developed the cross wavelet power, the cross wavelet coherency and the phase difference 

methodologies
10

. Although the cross wavelet tool improves the interactions between two time 

series at different frequencies and better explains how they evolve over time
11

, the wavelet 

coherency can be interpreted as a correlation coefficient in the time-frequency space. In 

addition, the term “phase” implies the position in the pseudo-cycle of the series as a function 

of frequency (Tiwari, 2013). 

 

2.2.1. The continuous wavelet transform 

In both the frequency and time scales, the wavelet is a function with a zero mean. We 

can characterise a wavelet by how localised it is in time ( dt ) and frequency ( ωd  or the 

bandwidth). The conventional approach of the Heisenberg uncertainty principle explains that 

a trade-off always exists between localisation in time and frequency.  

We define a limit to the smallness of the uncertainty product ωddt ⋅ . According to 

the specification of a particular wavelet, the Morlet wavelet is defined as: 

2

2

1

4/1

0 )(
α

αωπαψ
−

−= ee Ci

    
(9) 

where Cω a dimensionless frequency and α is a dimensionless time.  

When using wavelets for feature extraction purposes, the Morlet wavelet (with Cω =6) 

is a good choice because it provides a satisfactory balance between time and frequency 

localisation. We therefore restrict our further treatment to this wavelet. The idea behind the 

CWT is to apply the wavelet to the time series as a band pass filter. The wavelet is stretched 

in time by varying its scale (s) such that ts.=α and normalising it to unit energy. For the 

Morlet wavelet (with Cω =6), the Fourier period ( wtλ ) is nearly equal to the scale ( 03.1=wtλ
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s). The CWT of a time series NNtat ,1,.....,1, −= with uniform time steps tδ  is defined as the 

convolution of nx  with the scaled and normalised wavelet. We write:   

∑ = 


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We define the wavelet power as 
2

)(sW
A

t .The complex argument of )(sW
A

t could be 

interpreted as the local phase. The CWT contains edge artefacts because the wavelet is not 

completely localised in time. It is therefore useful to introduce a cone of influence (COI) in 

which the edge effects cannot be ignored. In this work, we take the COI as the area in which 

the wavelet power caused by a discontinuity at the edge has dropped to 2−
e of the value at the 

edge. The statistical significance of the wavelet power can be assessed relative to the null 

hypotheses that the signal is generated by a stationary process with a given background 

power spectrum ( kP ).  

Although Torrence and Compo (1998) have shown that the statistical significance of 

wavelet power can be assessed against the null hypothesis that the data-generating process is 

given by an AR(0) or AR(1) stationary process with a certain background power spectrum (

kP ), for more general processes, one must rely on Monte Carlo simulations. Torrence and 

Compo (1998) computed the white-noise and red-noise wavelet power spectrum from which 

they derived the corresponding distribution for the local wavelet power spectrum at each time 

n and scale sunder the null as follows: 
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where ν  is equal to 1 for real and 2 for complex wavelets.  

 

2.2.2. The cross wavelet transform 

The cross wavelet transform (XWT) of two time series ta and tb is defined as

*BAAB
WWW = , where 

A
W and 

B
W are the wavelet transforms of x  and y , respectively, and 

* denotes complex conjugation. We further define the cross wavelet power as
ABW . The 

complex argument 
ab

Warg  can be interpreted as the local relative phase between ta and tb in 



time-frequency space. The theoretical distribution of the cross wavelet power of two time 

series with background power spectra 
A

kP and 
B

kP is given in Torrence and Compo (1998) as: 
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where )(pZν  is the confidence level associated with the probability p for a pdf defined by the 

square root of the product of two 
2χ distributions.  

Although the wavelet power spectrum depicts the variance of a time series with 

occurrences of large variance indicating large power, the cross wavelet power of two time 

series depicts the covariance between these time series at each scale or frequency. 

 

2.2.3. The wavelet coherence  

According to the Fourier spectral approaches, the wavelet coherency (WTC) can be 

defined as the ratio of the cross-spectrum to the product of the spectrum of each series and 

can be treated as the local correlation both in time and frequency between two time series. At 

the same time, the wavelet coherency can be defined as the ratio of the cross spectrum to the 

product of the spectrum of each series (Aguiar-Conraria et al., 2008). 

Following Torrence and Webster (1999), we define the WTC of two time series as
12
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where S  is a smoothing operator.  

Based on the work of Aguiar-Conraria and Soares (2011c), we focus on the wavelet 

coherency instead of the wavelet cross spectrum because the wavelet coherency presents the 

advantage of normalisation by the power spectrum of the two time series.  

 

2.2.4. The cross wavelet phase angle 

Because we are interested in the phase difference between the components of the two 

time series, we need to estimate the mean and confidence interval of the phase difference. We 

use the circular mean of the phase over regions with greater than 5% statistical significance 
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 Notice that this definition closely resembles that of a traditional correlation coefficient, and it is useful to 

think of the wavelet coherence as a localized correlation coefficient in time-frequency space. 



(i.e. outside the COI) to quantify the phase relationship. This method is useful and general for 

calculating the mean phase. The circular mean of a set of angles ),....,1,( ntat = is defined as: 
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It is difficult to calculate the confidence interval of the mean angle reliably because 

the phase angles are not independent. The number of angles used in the calculation can be set 

arbitrarily high simply by increasing the scale resolution. However, it is of interest to obtain 

the scatter of angles around the mean. For this purpose, we define the circular standard 

deviation as: 

)/ln(2 tRs −=     (15) 

where 
22 BAR += . 

The circular standard deviation is analogous to the linear standard deviation and 

varies from zero to infinity. A similar result is found if the angles are distributed closely 

around the mean angle. In certain cases, there might be reasons for calculating the mean 

phase angle for each scale, and in those cases, the phase angle can be quantified as a number 

of years.  

Monte Carlo simulation methods are used to obtain the statistical significance level of 

the wavelet coherence. We generate a large ensemble of surrogate data set pairs with the 

same AR(1) coefficients as the input datasets. We compute the wavelet coherence for each 

pair and estimate the significance level for each scale using only the values outside the COI. 

To conclude, all of these CWT developments supply important information on the 

common movement of the series. As Grinsted et al. (2004) have shown, the XWT will expose 

the common power of the series and the relative phase in time-frequency space (we look for 

the common features of the two series). However, the WTC methods allow us to estimate the 

presence of a simple cause-effect relationship between the phenomena recorded in the time 

series. Finally, the COI tests for phase differences between the components of the two time 

series (i.e., the series are in an anti-phase position or not). 

 

 

 

 

 

 



3. Data and empirical results

 

3.1. Data 

 

For the inflation and output gap, we use monthly data for the period 1957M2

2011M12. The data are extracted from 

of the International Monetary Fund (IMF) (2012).

The inflation is defined as the monthly g

month) of the consumer price index (CPI) expressed in 

industrial production index (IIP) as a proxy 

The output gap is subsequently 

based on the HP filter
13

and the observed values of the IIP for France

 

Fig. 1. The trend of the inflation and output gap

 

The use of IIP as a proxy for the output gap has become popular 

Mitra et al. (2011) show, there is a strong justification for using IIP as a proxy for GDP: “

follows from the fact that IIP series reflects the efficiency at which the level of technology, the 

abundance and quality of productive resourc
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in real business cycle theory. In practice, the stochastic trends

approximated by statistical methods such as the HP filter (see Dees et al., 2008).
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International Monetary Fund (IMF) (2012). 

The inflation is defined as the monthly growth rate (compared 
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industrial production index (IIP) as a proxy for the output growth to estimate the output gap. 

subsequently computed as the difference between the IIP trends obtained 

and the observed values of the IIP for France (see Fig. 1)
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Prescott filter is a classic mathematical tool used to filter macroeconomic data series, especially 

in real business cycle theory. In practice, the stochastic trends (e.g., in the case of output

approximated by statistical methods such as the HP filter (see Dees et al., 2008). 

For the inflation and output gap, we use monthly data for the period 1957M2- 

IFS (International Financial Statistics) CD-ROM 

rowth rate (compared with the previous 

natural logarithm. We use the 

output growth to estimate the output gap. 

ted as the difference between the IIP trends obtained 

(see Fig. 1).  

 

The use of IIP as a proxy for the output gap has become popular in economics. As 

Mitra et al. (2011) show, there is a strong justification for using IIP as a proxy for GDP: “It 

follows from the fact that IIP series reflects the efficiency at which the level of technology, the 

es and labour force an economy is utilising, 

to filter macroeconomic data series, especially 

in the case of output) are often 



which, in turn, reflect the industrial performance of the economy”. Consequently, from a 

global perspective, the IIP supplies additional information on the economy.  

The descriptive statistics of the inflation and output gap (Y_gap) are presented in 

Table 1. 

 

Table 1 Descriptive statistics of inflation and the output gap 

 Inflation Y_gap 

 Mean  0.388745  0.000581 

 Median  0.305319 -1.897357 

 Maximum  3.279010  29.81634 

 Minimum -0.860305 -15.93978 

 Std. Dev.  0.430929  7.999102 

 Skewness  1.262271  2.014159 

 Kurtosis  7.404194  7.042514 

 Jarque-Bera  707.6077  894.2978 

 Probability  0.000000  0.000000 

 Observations  659  659 

 

The measure of skewness indicates that both inflation and the output gap are 

positively skewed. Similarly, both series demonstrate excess kurtosis, i.e., both series are 

leptokurtic. This type of distribution is quite often in financial and economic variables. The 

Jarque–Bera normality test rejects the null hypothesis of normality of the series. The data 

reported in Table 1 show a positive mean for inflation and a nearly zero mean for the output 

gap. At the same time, the median is positive for inflation and negative for the output gap, 

which also has a high volatility. 

 

3.2. Results 

 

3.2.1. Results obtained based on the discrete wavelet approach 

We decomposed the two series based on the methodology described in the previous 

section and using s8 filters
14

. Next, we performed an analysis of the relative importance of 

the short-, medium- and long-term dynamics. For this purpose, we used the energy of the 

wavelet decomposition
15

 of both variables, i.e., the energy of each scale (or frequency), to 

measure the relative importance of the short-, medium- and long-runs. 

An analogy exists between the energy and the variance of each detail level described as the 

percentage of the overall energy. Hence, the percentage of the variance explained by each 

                                                           
14

 See Appendix 1 for the MODWT decomposition of inflation and the output gap.  
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scale is measured. Percival and Walden (2000) argued the fact that the DWT has the ability to 

decompose the energy in a time series across scales, and Percival and Mofjeld (1997) proved  

that the MODWT is also an energy-preserving transform (i.e., the variance of the time-series 

is preserved in the variance of the coefficients from the MODWT). Consequently, a time-

series x(t) with wavelet coefficients for scale j, tjw ,
~

and scaling coefficients tjV ,

~
, from a 

MODWT has the following energy decomposition:  
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Where N is the number of observations used in the calculation.
16

 This method allows 

separation of the contributions of energy in the time series due to changes at a given scale. 

Table 2 presents the energy of each scale (as a percentage of the overall energy) for 

the two variables under consideration, namely, inflation and output gap. Toobtain an 

unbiased estimator, the coefficients affected by the boundaries were not included in Table 2. 

Notice that only six scales were used (the seventh scale is included in the smoothness)
17

. The 

Daubechies least asymmetric wavelet filter (LA) was used for Table 2 because it is less 

affected by the boundaries.  

 

Table 2 Energy decomposition for inflation and the output gap  

Wavelet scales Inflation Y_gap 

D1 (2-4 Month Cycles) 10.18% 42.96% 

D2 (4-8 Month Cycles) 6.86% 30.56% 

D3 (8-16 Month Cycles) 5.95% 21.36% 

D4 (16-32 Month Cycles) 4.62% 2.79% 

D5 (32-64 Month Cycles) 3.10% 1.93% 

D6 (64-128 Month Cycles) 3.21% 0.35% 

S6 (Above 128 Month Cycles) 66.04% 0.01% 

 

The wavelet scales are represented on the first column of Table 2. The second and 

third columns respectively present the energy distribution of the inflation and output gap 

corresponding to the wavelet scales. We discuss energy distribution in four major periods, 

namely, the short-run (D1+D2), medium-run (D3+D4), long-run (D5+D6) and very long-run 

(s6). For the output gap, if the short-run dominates all other periods/frequencies and explains 
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In the following, we present the analysis of the association between these two series 

using wavelet covariance and correlation (Fig. 3). The MODWT base wavelet covariance of 
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and frequency bands. It shows how the two series are associated with one another. Our results 

state that, the wavelet covariance slowly fluctuates in the analysed period with a flattening 
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Fig. 5. Wavelet cross-correlation between inflation and output gap
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3.2.2. Results obtained based on the continuous wavelet approach
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In Fig. 6, we describe the wavelet power spectrum of inflation and the output gap. The 

co-movement is presented in a contour plot with three dimensions: time, frequency and 

colour code. Therefore, to assess whether the series move together and if the strength of the 

co-movement changes across frequencies and over time, we look to the contour plot. The 

thick black contour represents the 5% significance level against the red noise. The colour 

code for power ranges from black (low power) to white (high power). 

 

Fig. 6.Continuous wavelet power spectra of inflation and the output gap 

 

Fig. 6 clearly shows the common significant features (at a 5% significance level) in 

the wavelet power of the two time series, such as the 0.25 to 1year scale that corresponds to 

the 1993s. Both series also show high power in the 0.5 to 1.25 year scale that corresponds to 

the period 1996-1997, and the 0.25 to 0.5 year scale that corresponds to the post-2000 period.  

However, the similarities between the portrayed patterns in this period are low, and it is 

therefore difficult to determine if this is merely a coincidence. The cross wavelet transform 

provides clarification in this case (see Fig. 7).  

 

 



 
 

Note: The thick black contour designates the 5% significance level estimated from the Monte Carlo simulations using the 

phase randomised surrogate series. The cone of influence, which indicates the region affected by edge effects, is also shown 

with a light black line. The phase differences between the two series are indicated by arrows. Arrows pointing to the right 

mean that the variables are in phase,to the right and up mean that the Y-gap is leading, andto the right and down mean 

thattheY-gap is lagging. Arrows pointing to the left mean that the variables are out of phase,to the left and up mean that the 

Y-gap is lagging and to the left and down mean thatthe Y-gap is leading. Thein-phase condition indicates that variables will 

have a cyclical effect on each other, and the out-of-phase or anti-phase condition shows that the variables will have an anti-

cyclical effect on each other.The Y-axis measures the frequencies and the X-axis represents the time period 

studied. 

Fig. 7.Crosswavelet power spectrum and coherency of the inflation and output gap 

 

On the left side of Fig.7, we present the results obtained using the XWT. It is very 

clear from the XWT results that the cross wavelet power spectrum increased after 1990 for 

the 0.25 to 0.5 year scale. We note one significant area in the one-year scale of 1980. 

However, although periods and frequencies with significant relationships exist, it is not clear 

which variables among them are leading or lagging. Overall, taking into account the arrow 

directions and the high-power regions, we consider that a link exists between inflation and 

the output gap series, as implied by the cross wavelet power.  

Furthermore, it is worth mentioning that the wavelet cross spectrum (i.e., cross 

wavelet) describes the common power of two processes without normalisation to a single 

wavelet power spectrum. This method can produce misleading results because one essentially 

multiplies the continuous wavelet transform of two time series. For example, if one of the 

spectra is local and the other exhibits strong peaks, those peaks in the cross spectrum can be 

produced even if they have no association with any relationship between the two series. This 

observation leads us to conclude that the wavelet cross spectrum is not suitable for testing the 

significance of relationships between these two time series. Therefore, our conclusion relies 

on the wavelet coherency (because it is able to detect a significant relationship between two 

time series; for details, see Section 2.2). However, we can still use the wavelet cross-

spectrum to estimate the phase spectrum. The wavelet coherency is used to identify both the 

frequency bands and the time intervals within which the pairs of indices show co-variance. 

Finally, we present the results of the cross wavelet coherency on the right side of Fig. 7. 



The results from the WTC show that during 1980-1990, the arrows point mostly left-

down for up to 0.25 years of scale indicating an anti-phase relationship with the Y-gap 

leading, whereas during 1995-2012, the arrows point left-up for up to 0.25 years of cycle 

indicating that the variables are out of phase but Y-gap is lagging. These results mean that for 

the first period, the output gap causes the inflation, whereas for the second period (1995-

2012), the inflation predicts the output gap. 

During 1990-2012, for 0.25 to 0.5 years of cycle, the direction of the arrows is not 

clear, whereas for 0.75 to 1.75 years of cycles during 1982-2008, the arrows point left-down, 

indicating an anti-phase or anti-cyclical relationship and Y-gap leads. Similar results are 

obtained in the 1980s for 2 to 8 years of scales, but the opposite case is observed in which the 

arrows point left-up. The arrows point left-up during 1998-2007 for 2 to 5 years of scale, 

which indicates an anti-phase relationship between inflation and the Y-gap and lagging by the 

Y-gap. Consequently, in most of the cases, we observe an anti-phase relationship between the 

Y-gap and inflation. Thus, in the short-run, the output gap causes inflation, but for the 

medium-run scale, a bidirectional influence can be observed. 

To resume our findings, we conclude that the output gap has an impact on inflation in 

France, particularly in the short-run. However, it is important to note how the research 

presented above ties in with the existing empirical findings in the literature. We observe that 

our results are in agreement with those of Assenmacher-Wesche and Gerlach (2008a), who 

found that output gap influences inflation only at the high frequency bands (i.e., in the short-

run
19

) in a frequency-domain analysis for the Euro area. With respect to the French case, the 

reported results are in line with those presented by Crédit Agricole (2009) and state that the 

output gap represents a significant determinant of inflation. 

These results have important policy implications for the role of the output gap in 

explaining inflation. Because France (in addition to Germany) is one of the largest EU 

economies, the ECB must focus on the output gap in these countries to find an explanation 

for the inflation dynamics in the Euro area. At the same time, due to the production influence 

on the price level in France, several conclusions can be drawn for the private sector with 

respect to the inflationary and/or deflationary signals.  

After the crisis, the growth potential appears softer, with a reduced impact on 

inflation. However, during past years, the output gap acted as a good predictor for the 
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Montoya and Döhring (2011) found that the output gap has a small impact on inflation in the Euro area. 



inflation dynamics in France. Using wavelet analysis, we have shown both the co-movement 

(wavelet coherency results) and the causality between variables (phase relationship results). 

 

4. Conclusions  

This paper aims to examine the utility of the output gap for explaining inflation 

dynamics in France using a new approach, namely, the wavelet transform. For a long time, 

this relationship has served as the workhorse of studies with the Phillips curve, but the 

empirical results often failed to validate the theoretical assumptions. Although most of the 

empirical work has been devoted to estimating the output gap and constructing the NKPC in 

a GMM framework, few researchers have paid attention to the problems related to the non-

stationarity of the statistical series. A possible solution advanced in the literature is frequency 

domain analysis, which ignores the time features of the data. Nevertheless, a more 

appropriate and better-suited approach would combine the time and frequency domain 

analyses.  

Thus, our study enriches the empirical literature on the Phillips curve in several ways. 

First, the paper tests the role of the output gap in explaining the inflation dynamics in France, 

which was a case study that was neglected after the construction of the Euro area. This work 

extends the work of Crédit Agricole (2009) for French data in the time series by applying the 

wavelet approach. Second, the paper uses both discrete and continuous wavelets in 

complementary methodologies and demonstrates that the output gap represents a good 

predictor of the inflation in the short-run and in the medium-run. In summary, our results 

suggest that the output gap must be considered as a necessary element for inclusion in the 

NKPC analysis, and the results support the conclusion that the output gap has important 

implications for the ECB’s monetary policy. 

Moreover, our analysis also highlights selected areas for further research. Several 

extensions of the analysis presented above appear to be warranted. In particular, it would be 

desirable to perform the same analysis at the Euro area level. However, an intermediary step 

will be the analysis of the German case, which could prove the robustness of our findings. If 

the output gap represents a determinant of the inflation in this case as well, it will provide 

strong evidence for the manner in which the ECB must consider the output gap in its policy 

decisions. 

 

 

 



Appendix 1.MODWT decomposition of inflation and the output gap 

 

 

 

References 
 

Abbas, S.K., Sgro, P.M., 2011.New Keynesian Phillips Curve and inflation dynamics in 

Australia. Economic Modelling.28, 2022–2033. 

Aguiar-Conraria, L., Azevedo, N., Soares, M.J., 2008.Using wavelets to decompose the time-

frequency effects of monetary policy. Physica A: Statistical Mechanics and its 

Applications. 387, 2863–2878. 

Aguiar-Conraria, L.,Soares, M.J., 2011a. Business cycle synchronization and the Euro: A 

wavelet analysis. Journal of Macroeconomics. 33, 477–489. 

Aguiar-Conraria, L.,Soares, M.J., 2011b.The continuous wavelet transform: a primer. NIPE 

Working Paper 16–2011. 

Aguiar-Conraria, L.,Soares, M.J., 2011c. Oil and the macroeconomy: using wavelets 

toanalyze old issues. Empirical Economics. 40, 645–655. 

Ashley, R.,Verbrugge, R.J., 2006.Mis-Specification and Frequency Dependence in a New 

Keynesian Phillips Curve. Virginia Polytechnic Institute and State University, Department 

of Economics, Working Paper e06–12. 

Assenmacher-Wesche, K.,Gerlach, S., 2007.Money at Low Frequencies. Journal of the 

European Economic Association. 5, 534–542. 

Assenmacher-Wesche, K., Gerlach, S., 2008a.Interpreting euro area inflation at high and low 

frequency. European Economic Review. 52, 964–986. 

Assenmacher-Wesche, K.,Gerlach, S., 2008b. Money growth, output gaps and inflation at 

low and high frequency: Spectral estimates for Switzerland. Journal of Economic 

Dynamics and Control. 32, 411–435. 

Baghli, M., Cahn, C., Fraisse, H., 2007.Is the Inflation–output Nexus Asymmetric in the Euro 

Area?.Economics Letters. 94, 1–6. 

Benhmad, F., 2012.Modeling nonlinear Granger causality between the oil price and U.S. 

dollar: A wavelet based approach. Economic Modelling. 29, 1505–1514. 

Bolt, W., van Els, P.J.A., 2000.Output gap and inflation in the EU. Staff Report no. 44, Dutch 

National Bank, Amsterdam. 

0 100 200 300 400 500 600 700

s
6
{-

1
8

9
}

d
5

{-
1
0

9
}

d
3

{-
2
5

}
d

2
{-

1
1
}

d
1
{-

4
}

MODWT of Inflation using s8 filters

Position

0 100 200 300 400 500 600 700

s
6
{-

1
8

9
}

d
5

{-
1
0

9
}

d
3

{-
2
5

}
d

2
{-

1
1
}

d
1
{-

4
}

MODWT of Y_gap using s8 filters

Position



Boug, P., Cappelen, A., Swensen, A.R., 2010. New Keynesian Phillips curve revisited. 

Journal of Economic Dynamics and Control. 34, 858–874. 

Byrne, J., Kontonikas, A.,Montagnoli, A., 2010.International evidence on the new Keynesian 

Phillips curve using aggregate and disaggregate data. SIRE Discussion Paper2010–57. 

Céspedes, L.F., Ochoa, M., Soto, C., 2005.The New Keynesian Phillips Curve in an 

Emerging Market Economy: the case of Chile. Central Bank of Chile Working Paper355. 

Claus, I. (2000), Is the output gap a useful indicator of inflation?, Reserve Bank of New 

Zeeland, DP2000/05. 

Crédit Agricole, 2009.France : cycles d’activité et inflation sous-jacente. Crédit Agricole, 

Direction des Etudes Economiques, Apériodique.127. 

Daubechies, I., 1992. Ten Lectures on Wavelets, SIAM, Philadelphia. 

Dajcman, S., Festic, M.,Kavkler, A., 2012.Comovementbetween Central and Eastern 

European and developed European stock markets: scale based wavelet analysis. Actual 

Problems of Economics. 3, 375–384. 

Dees, S., Pesaran, H., Smith, L.V., Smith, R.P., 2008.Identification of New Keynesian 

Phillips Curves from a Global Perspective.ECB Working Paper892–2008. 

Dwyer, A., Lam, K., Gurney, A., 2010. Inflation and the output gap in the UK. Treasury 

Economic Working Paper 6. 

ECB, 2009.The links between economic activity and inflation in the euro area.ECB monthly 

bulletin, September.54–57. 

Estrella, A., Fuhrer, J., 2002. Dynamic inconsistencies: counterfactual implications of a class 

of rational expectations models. American Economic Review. 92, 1013–1028. 

Friedman, M., 1968.The role of monetary policy. American Economic Review. 58, 1–17. 

Gabor, D., 1946.Theory of communication. Journal of the Institute of Electrical Engineers. 

93, 429–457. 

Galí, J.,Gertler, M., 1999.Inflation Dynamics: a Structural Econometric Analysis. Journal of 

Monetary Economics. 44, 195–222. 

Galí, J., Gertler, M., Lopez-Salido, J.D., 2001.European inflation dynamics. European 

Economic Review. 45, 1237–1270. 

Gallegati, M., Gallegati, M., Ramsey, J.B., Semmler, W., 2011.The US Wage Phillips Curve 

across Frequencies and over Time. Oxford Bulletin of Economics and Statistics. 73, 0305–

9049. 

Gençay, R., Selçuk, F.,Whitcher, B., 2002.An introduction to wavelets and other filtering 

methods in finance and economics, Academic Press, San Diego. 

Gerlach, S.,Peng, W., 2006.Output gaps and inflation in Mainland China. China Economic 

Review. 17, 210–225. 

Goupillaud, P., Grossman, A., Morlet, J., 1984.Cycle-octave and related transforms in 

seismic signal analysis.Geoexploration.23, 85–102. 

Grossmann, A.,Morlet, J., 1984. Decomposition of Hardy functions into square integrable 

wavelets of constant shape. SIAM Journal on Mathematical Analysis. 15, 723–736. 

Grinsted, A., Moore, J.C.,Jevrejeva, S., 2004.Application of the cross wavelet transform and 

wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 11, 

561–566. 

Haug A.A.,Dewald, W.G., 2012. Money, output, and inflation in the longer term: major 

industrial countries, 1880–2001.Economic Inquiry. 50, 773–787. 

Hudgins, L., Friehe, C., Mayer, M., 1993. Wavelet transforms and atmospheric 

turbulence.Physics Review Letters. 71, 3279–3282. 

Imbs, J., Jondeau, E.,Pelgrin, F., 2011. Sectoral Phillips curves and the aggregate Phillips 

curve.Journal of Monetary Economics. 58, 328–344. 



In, F., Kim, S., 2006. The Hedge Ratio and the Empirical Relationship between the Stock and 

Futures Markets: A New Approach Using Wavelet Analysis. The Journal of Business. 79, 

799–820. 

Jammazi, R., 2012. Cross dynamics of oil-stock interactions: A redundant wavelet analysis. 

Energy. 44, 750–777. 

Jondeau, E.,Pelgrin, F., 2009.Aggregating rational expectations models in the presence of 

unobserved micro heterogeneity. Swiss Finance Institute Research Paper Series 09–30. 

Jondeau, E., Le Bihan, H., 2005.Testing for the New Keynesian Phillips Curve. Additional 

international evidence. Economic Modelling. 22, 521–550. 

Kamada, K., 2005.Real-time estimation of the output gap in Japan and its usefulness for 

inflation forecasting and policymaking. North American Journal of Economics and 

Finance.16, 309–332. 

Komlan, F., 2013. The asymmetric reaction of monetary policy to inflation and the output 

gap: Evidence from Canada. Economic Modelling. 30, 911–923. 

Laxton, D., Rose, D., Tambakis, D., 1999. The U.S. Phillips Curve The Case for 

Asymmetry.Journal of Economic Dynamics and Control. 23, 145–985. 

Leith, C.,Malley, J., 2007.Estimated Open Economy New Keynesian Phillips Curves for the 

G7. Open Economies Review. 18, 405–426. 

Lown, C.S., Rich, R.W., 1997. A look at the US inflation puzzle. BIS Conference Papers 4, 

193–219. 

Mihailov, A., Rumler, F.,Scharler, J., 2011. The Small Open-Economy New Keynesian 

Phillips Curve: Empirical Evidence and Implied Inflation Dynamics. Open Economies 

Review. 21, 317–337. 

Mitra, S., Maheswari, V., Mitra, A., 2011.A wavelet filtering based estimation of output gap. 

Applied Mathematics and Computation. 218, 3710–3722. 

Montoya, L.A.,Döhring, B., 2011. The improbable renaissance of the Phillips curve: The 

crisis and euro area inflation dynamics. DG ECFIN, Economic Paper 446. 

Naccache, T., 2011.Oil price cycles and wavelets. Energy Economics, 33, 338–352. 

Paul, B.P., 2009.In search of the Phillips curve for India. Journal of Asian Economics. 20, 

479–488. 

Percival, D.B.,Mofjeld, H.O., 1997.Analysis of Subtidal Coastal Sea Level Fluctuations 

Using Wavelets. Journal of the American Statistical Association. 92, 868–880. 

Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge 

University Press, Cambridge.   

Phelps, E.S., 1967. Phillips curves, expectations of inflation, and optimal unemployment over 

time. Economica. 34, 254–281. 

Raihan, S., Wen, Y., Zeng, B, 2005. Wavelet: a new tool for business cycle analysis. Federal 

Reserve Bank of St. Louis Working Paper 2005–050A. 

Roberts, J.M., 1995. New Keynesian economics and the Phillips curve. Journal of 

Money,Credit and Banking. 27, 975–984. 

Rua, A., 2010.Measuring comovement in the time-frequency space. Journal of 

Macroeconomics. 32, 685–691. 

Russell, B., Banerjee, A., 2008.The long-run Phillips curve and non-stationary inflation. 

Journal of Macroeconomics. 30, 1792–1815. 

Shahbaz, M., Tiwari, A.K.,Tahir, M.I., 2012.Does CPI Granger-cause WPI? New extensions 

from frequency domain approach in Pakistan. Economic Modelling. 29, 1592–1597. 

Tillmann, P., 2009. The New Keynesian Phillips curve in Europe: does it fit or does it 

fail?.Empirical Economics. 37, 463–473. 



Tiwari, A.K., 2012.An empirical investigation of causality between producers' price and 

consumers' price indices in Australia in frequency domain. Economic Modelling. 29, 

1571–1578. 

Tiwari, A.K., 2013. Oil prices and the macroeconomy reconsideration for Germany: using 

continuous wavelet. Economic Modelling. 30, 636–642. 

Tiwari, A.K., Dar, A.B.,Bhanja, N., 2013. Oil price and exchange rates: A Wavelet based 

analysis for India. Economic Modelling. 31, 414–422. 

Tiwari, A.K, Mutascu, M.,Andries, A.M., 2013.Decomposing time-frequency relationship 

between producer price and consumer price indices in Romania through wavelet analysis. 

Economic Modelling. 31, 151–159. 

Torrence, C., Compo, G., 1998.A practical guide to wavelet analysis. Bulletin of the 

American Meteorological Society. 79, 61–78. 

Torrence, C., Webster, P.J., 1999.Interdecadal Changes in the ENSO–Monsoon 

System.Journal of Climate. 12, 2679–2690. 

Trezzi, R., 2013.A wavelet analysis of international risk-sharing. Economics Letters. 118, 

330–333. 

Zhang, C.,Murasawa, Y., 2011. Output gap measurement and the New Keynesian Phillips 

curve for China. Economic Modelling. 28, 2462–2468. 

 


