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Macroeconomics-at-Risk

We estimate Value-at-Risk of output using quantédgressions. Our
objective is to gauge dynamically the tail riskre&l activity. We find
that the shape of the distribution of output evelewer time and not
only its location and its dispersion. Moreover aficial intermediation
stress has a significantly stronger elasticity wiglal activity at the
lower tail of the distribution.
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Since at least Engle (1982) and Stock and Wats0662(2 we know that the
conditional variance of future output and inflatiemolves over time. However, in
these seminal contributions, the risk of real afgtivand inflation is implicitly
considered as symmetric. In this paper, we invastighe time evolution of the
conditional distribution of macroeconomics varialeith a special interest on the
extreme tails of the output.

The conduct of monetary policy has been recentlyo@ated to a risk
management practice both in monetary policy statésn@reenspan, 2003; Mishkin,
2008) and in academic research (Kilian and Mang¢ja2€l08). This risk management

perspective of the monetary policy is directly imsg by the literature on robust
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control (Hansen and Sargent, 2003 and 2007). Thaedea of robust control is that
policy-making should aim at minimizing the conseuges of worst-case scenarios

Thus Federal Reserve Board Chairman Alan Greenispaf03 declares that
“A central bank seeking to maximize its probabilitfiyachieving its goals is driven, |
believe, to a risk-management approach to poligyttss | mean that policymakers
need to consider not only the most likely futuréhptor the economy but also the
distribution of possible outcomes about that p&@reenspan 2003).

The common practice of risk management requiresraiting the probability
of catastrophe. For a financial intermediary, theufois on reducing the risk of
significant monetary loss. For a central bankemetins acting to reduce the chances
that output or the price level will be substanyidielow trend. Because of their focus
on the conditional mean of the quantities being emdtraditional time-series
econometric tools are ill-equipped to address thestions that are foremost in the
minds of policymakers who adopt such a risk manageperspective.

To control risk in financial institutions, risk mayeas employ the concept of
Value-at-Risk (VaR). VaR measures the worst posslbks over a specific time
horizon, at a given probabilityHence, our objective is to propose such VaR esém
on output to gauge and explain tail macroeconomksr

We pay a special attention to financial stressofacin our estimates. Indeed,
the recent financial turmoil featured a risk in thigility of financial institutions to
ensure their financial intermediary role betweemdexs and borrowers for the non-
financial sector (households and businesses) lsat laétween financial institutions
themselves.

The two reference models developed to analyze bssinycle fluctuations in
developed economies — the real business cycle m@hel dynamic neo-Keynesian

model — confer to financial intermediaries a mimolte, and the macroeconomic

1. Even if the required policy eventually appears-eptimal considering ex post that the large-scale
shocks have not materialized, a risk-managemenibapp assesses that the associated cost of buying
an insurance is small compared to the alternative

2. The VaR has been widely accepted since the 1980ss first popularized by JP Morgan and
later by Risk-Metrics Group in their risk managemsaftware. VaR became so popular that it was
approved by bank regulators as a valid approachdimulating risk charges. There are two well known
limitations of VaR measures: (a) they not take iat@ount the size of tail losses; and (b) they lack
“coherence” in the sense of Artzner et al. (1998)ce they do not satisfy the sub-additivity praper
required for consistent risk ordering. This meahsttVaR may be incapable of identifying
diversification opportunities. Although there ha=eh a good deal of criticism of VaR in the literatu
because of these shortcomings, it remains a widgsdygl method for risk measurement by practitioners
mainly because it has an intuitive interpretatiitngan be easily back-tested, and it is required by
regulation.



literature revealed little about the relationshigtvieen financial intermediation and
macroeconomic volatility.

In recent years however, many contributions haverged to (1) attempt to
link theoretical financial factors — including, butot limited to, financial
intermediation — to macroeconomic fluctuations #reloptimal response of monetary
policy financial shocks, (2) assess the cost dufes of financial intermediaries
generally are of direct relevance to the costsaoking and financial crises.

The idea that the financial sector can amplifyllisiness cycle dating at least to
Fisher (1933). Traditionally, financial shocks wengprehended through the channel
of the cost of credit (or the interest rate chanaald wealth effects (see, e.g., Lettau
and Ludvigson, 2004). Since the work developed bsnBnke and Blinder (1988) and
Bernanke and Gertler (1995 and 1996), it is appaitest financial imperfections
resulting from information asymmetries, contribtivethe transmission but also the
amplification of monetary shocks, real or financMbre recently, studies have shown
that the analytical framework of the financial decator could be extended agents,
non-financial intermediaries. This new financialcelerator describes how the
financial system amplifies the impact of the rezdreomy.

The new financial accelerator mechanism has besarlglillustrated by Adrian
and Shin (2008) - a negative shock to asset pdepteted bank capital and leverage
increases. Since it is difficult to raise new calpih times of crisis, when banks tend to
liquidate their assets. These disposals impactssgtaprices then propagating the
initial shock. This mechanism may have a strongaichpon economic activity,
especially when several banks simultaneously shatkch is typical of systemic
events. In this context, the multiplication factwr leverage - when banks are
themselves indebted, the initial shock and reduciegative asset price follows can
lead to massive liquidations of assets, which aceges the lower prices and possibly
trigger a vicious circle, especially if banks wémtestore a target debt level.

This is the meaning of the concerns raised in on the risk of a credit
crunch, that is to say a rationing of credit follog/ the blocking of the interbank
market.

We estimate dynamically, using quantile regressiotiee probability

distribution of future output, as opposed to meatVar variance point estimates. This



framework allows the shape of the distribution ofput to be assessed conditionally
on the current state of the economy and is totabigel based and judgement ftee

Quantile regression (Koenker and Basset, 1978; k&en2005) may be
considered as a natural extension of classicat kEpsares estimation of conditional
mean models to the estimation of an ensemble ofetaoidr conditional quantile
functions. The central special case is the medigression estimator that minimizes a
sum of absolute errors. The remaining conditionergile functions are estimated by
minimizing an asymmetrically weighted sum of abs®lerrors. Altogether the
ensemble of estimated conditional quantile funcioffers a much more complete
view of the effect of covariates on the locatiotals and shape of the distribution of
the response variable.

The rest of the paper is organized as follows. dotisn 1, we present the
empirical framework. In particular, Section 1.1dfly exposes the quantile regression
methodology. Section 1.2 presents the data andioBed.3 discusses some
preliminary analyses based on a simple VAR methagol Section 2 presents the
empirical results from quantile regressions. Secti® summarizes our main

conclusions.

1. THE EMPIRICAL FRAMEWORK

1.1 Quantile Regression

In order to address how changes in a set of camili variables influence the

shape of the distribution of a dependent variallegnker and Bassett (1978)

A number of institutions construct indicators ofdcast uncertainty that are related to the cuseate

of the economy by skewing and rescaling measurgmsif-forecast performance using assessment of
risk and simulations. The BoE produces asymmed#nicdharts for its inflation and GDP forecasts, by
skewing and rescaling past forecast errors basethenMPC members’ judgment of risks. In a
somewhat different manner the Bank of Japan agteeglistribution forecasts of its board members.
The IMF global growth forecasts for the World Ecorio Outlook are not based on an explicit model
(being an aggregate of individual country foredastence asymmetric fan charts are based on an
automated assessment of risks related to four gtdafactors: financial conditions (term spreattia
stock market returns), oil prices and global indemates (Elekdag and Kannan, 2009). The volatility
and market expectations on developments of thegefactors are used to rescale and skew the past
forecast errors to arrive at a probability disttibn. Alternatively, the Norges Bank, the Bank of
Canada (for longer horizons) and on some occastfm<PB (Lansen and Krankendonk, 2008), use
model-based stochastic simulations, where the denfie intervals are derived from shocking the
underlying variables and model coefficients.



developed the concept of “quantile regression”. iile& regression is designed to
answer the following question: When a conditionivgriable X changes, what

happens to the™ quantile of the distribution of ?

Quantile regression can be viewed as an extendiarlassical Ordinary Least
Squares (OLS hereafter). In quantile regressioa, dstimation of the conditional
mean by OLS is extended to the similar estimatibraro ensemble of models of

various conditional quantile functions for a daistribution. Then, quantile regression

can better quantify conditional distribution pf | X). The central special case is the

median regression estimator that minimizes a suabsblute errors. The estimates of
remaining conditional quantile functions are obeain by minimizing an
asymmetrically weighted sum of absolute errors whke weights are the function of

the quantile of interest. Taken together, the etde@f estimated conditional quantile

functions of (y|x) offers a more complete view of the effect of ciatas on the

location, scale and shape of the distribution ef tiassponse variable. In the classical
approach of OLS regression the conditional meantfom, the function that describes

how the mean ofy changes with the vector of covariatesis (almost) all we need to
know about the relationship betwegnand x. Then, classical OLS is considered as a

pure location shift model since it assumes tRatffects only the location of the

conditional distribution ofy, not its scale, or any other aspect of its distrdnal

shape.

Covariates may influence the conditional distribatiof the response in myriad
other ways: expanding its dispersion as in tradgiomodels of heteroscedasticity,
stretching one tail of the distribution, compregsthe other tail, and even inducing
multimodality. Explicit investigation of these efts via quantile regression can
provide a more nuanced view of the stochastic ioxlahip between variables, and
therefore a more informative empirical analysis.

Parameter estimation in quantile regression is résult of an optimization
problem. To see how this works, recall that we wate down an OLS problem as an
optimization problem where we minimize the sum @fiared deviations of the fitted
values for the dependent variable from the datéhénsame way, the median quantile
(0.5) in quantile regressions is defined throughgloblem of minimizing the sum of
absolute residuals. The symmetrical piecewise fidsolute value function assures

the same number of observations above and belomddéan of the distribution.



The other quantiles values can be obtained by nmimg a sum of
asymmetrically weighted absolute residuals, thergbyng different weights to

positive and negative residuals. Solving

argminy” o, (v, ~¢) 1)

$OR i=1

where ,or([)] is the tilted absolute value function (usually leal “pinball loss

function”), as illustrated in Figure 1, gives tli€ sample quantile with its solution.
Depending on the exact shape of the funqd,((rﬁ)], the optimization problem yields
an estimate at a particular quantile. This quawi#pends on the relative slopes on the

two sides of the origin.

Taking the directional derivatives of the objectiftanction with respect taf

(from left to right) shows that this problem yiglte sample quantile as its solution.
After defining the unconditional quantiles as amiraation problem, it is easy to
define conditional quantiles similarly. Taking tleast squares regression model for a

random sampley,, Y,,..., ¥, , we solve

arg mini:(yi - u)’ 2)

HOR i

which gives the sample mean, an estimate of thenditonal population mean.

Replacing the scalaw,, by a parametric functiow(x, ,8), and then solving

argminy_ (y; = (% ,[?))2 3)
uOR? ;1
gives an estimate of the conditional expectatiomction E(y| x) .

Proceeding the same way for quantile regressiombtain an estimate of the

conditional median function, the scaldr in the first equation is replaced by the

parametric functionf(x,,B), and 7 is set to Y. Finally, the estimation of the 99



percentile lines in addition to the standard “melm& makes possible the production
of not only a mean forecast, but a distributiorfarecasts around this mean. Further
insights into this robust regression technique banobtained from Koenker and

Basset (2005).

Quantile regression has been applied in a variétygamnomic and financial
problems. Applications include investigations of geastructure (Buchinsky and
Leslie, 2010), wage mobility (Buchinsky and Hun®&9 and educational attainment
(Eide and Showalter 1998). Financial applicationslude Chan and Lakonishok
(1992) and Engle and Manganelli (2004) to the mroid of robust beta estimation and
VaR respectively.

1.2 Data

Quantile regressions are implemented using monitmlg series of the US for the
period March 1975 - July 2012. All the series cdneen the FRED Il Database of the
Federal Reserve Bank of St-Louis and Datastreara.sBimple is constrained by the
availability of the house price index.

The main variables considered are: the index ofistrehl production,IP,, the
index of consumer pricesCPI,, the 3-month interbank ratd,IBOR, the 10 year
interest rateGBL0,, a house price indé,xHR , and equity prices (the S&P500 index),
PSP.

In addition to these "traditional” variables, wensmlered several variables
reflecting stress/health of financial intermediari@ stock market index of the US
banking sector (market capitalization weighteBBKS, the volatility of this index
(quadratic monthly returns)RBKS2,, an interbank spread (the Ted spreakgD, ,

the default spread (defined as the yield differelbesveen Moody’'s BAA and AAA
corporate bonds)DEF, , the implied volatility of the S&P equity inde¥X|X, , and two

4. Note that the house price index is built frora tbase-Shiller index and the OFHEO index before
January 1987.



aggregate indicators of financial stress calculégdhe Federal Reserve Bank of St.
Louis and the Federal Reserve Bank of Kansas @éyptedSL. andKC, °.

1.3 Preliminary analyses

We investigate, as a first step, causality andticglahips between the set of

macroeconomic and financial conditions variables.

The VAR model is estimated with 7 lags selectecebbamn the AIC information
criterion. Variables that include a (stochastic)dency were detrending using a high-
pass filter (the industrial production index, trensumer price index, the stock price
index and the house price index) since we focugyatical fluctuations. Given the

strong correlation of the two aggregated indicatdfrinancial stress §L, andKC,),

we only consider the Stress index of the Kansag Edtleral Reserve in our estimates
of the VAR modé.

Simple Granger causality tests appear in Table dppears that financial stress
indicators and industrial production have a doutdeisality at the 1% and 5%
significance level. Several variables also causaniial stress except the VIX, which
is most often caused by other indicators of finahsiress. Furthermore, some impulse

response functions confirm the significant impddirancial shocks on output.

Figure 2 presents generalized impulse responsetidms of the industrial
production growth and the equity index to a Tedeadrshock. We used the method
proposed by Pesaran and Shin (1998), which unli&ditionally used Cholesky
decomposition, does not require orthogonalizatioshocks and is independent of the
order of the variables. For each variable, the kl®equal to one standard deviation.
The time horizon of responses is 120 months whgchbiout the time required for the

variables return to their equilibrium levels.

This analysis indicates that the effects of stressthe interbank market are

significant on the activity and the stock marketted horizon of a few months. After

® See the appendix for some details about data secmtion for some variables.
® The correlation matrix of variables is shown ie #ppendix. Results obtained with the Stress indlex
the St Louis Federal Reserve are qualitativelylaimihese results are available upon request.



this horizon, the shocks fade gradually although ¢bnfidence intervals are wide

enough. Note that the impact on output is moreldardnan the stock price.

For forecasters, it has become customary to presleat point forecasts
accompanied by a forecast density (fan chafhis realistic approach implicitly
recognizes that it is impossible to predict withitamty. Confidence intervals and
density forecasts were increasingly used to descifiie uncertainty of any point
forecast (see e.g., Tay and Wallis, 2000).

Forecast densities are most often computed basetherdispersion of past
forecast errors of the estimated model. They petmwiew, from a fan chart, the
uncertainty associated to predictions. Figure 3asheuch a fan chart of industrial
growth forecasts calibrated on the standard dewiatif past forecast errors of the
VAR model.

However, this kind of methodology as well as surbbaged density forecasts do
not provide a conditional, semiparametric or repible fan chart. On the one hand,
most of the fan charts are unconditional: whatethe¥ economic situation, the
magnitude of the uncertainty represented is cohstam the other hand, the fan chart
of the Bank of England (BOE) is not reproducibledese it introduces subjectivity
members of the BOE.

2. EMPIRICAL RESULTS

To overcome the difficulties of traditional densioyecasts, we led, from quantile
regressions, estimates of the density of output.

Table 2 to 4 presents the results of quantile s=gpes for three quantiles (5%,
50% and 95%) of the industrial production growtlkev&al multivariate regressions
are examined. All variables are considered witkelay

Student statistics of the estimated coefficienésraported in parentheses and the
last column presents two statistics to assessdllegance of the regressions carried

out: the first one measures the frequency of bitgtfe VaR estimated and the second

7. Since 1996, the Bank of England publishes aitjefarecast for inflation in its quarterly Inflatn
Report, called “fan chart”. In France, INSEE pubdis a fan chart forecast as part of the Gross
Domestic Product (GDP) in his “Note de Conjoncture”



one, the sum of the absolute value of these hiisws in brackets). Hits are defined
as exceedances of the estimated VaR.

These results from Table 2 indicate that the intobidn of financial health
variables significantly impact the VaR95% of indiadt production (quantile 5%).
These variables appear to be significant and thesores of relevance predictions are

improved. It appears, however, that model onlyudiig the default spreaddEF,)

as a stress financial indicator achieves 5% queafdilecasts of industrial production
equally satisfying. This result may be related he smaller weight of the direct
banking intermediation in the US than it is in theo area.

Figure 4 shows the evolution of the industrial prcitbn growth and 95% VaR
estimated from the conditional specification inehgdand not including, respectively,
a financial stress indicator (here the regresstohd and # 16 in Table 2). This figure
shows that the estimated quantile 5% in induspratiuction growth is significantly

improved by the introduction of a financial facfbere the default sprea®EF,).

The observation that the financial stress variablessignificant is confirmed by
examining the absolute value of Hits of VaR estedatising two specifications # 14
and # 16 in Table 1.

Figure 5 shows the absolute values exceeding tBé 9&R conditional real
activity without (upper figure) and with (lower fige) financial stress indicators. Hits
appear less frequent and smaller amplitude wheimnandial stress indicator is
introduced in the specification of the quantileresgion.

Moreover, a test of inequality between the estichateefficients for different
guantiles and a comparison of estimated quantilesvo different states of nature
suggest that the first extreme quantile estimdéss than 15%) are more sensitive to
financial health variables than other quantiles. &ample, within specifications # 4
and # 6 (Table 2) which predict the 5% quantilenofustrial production growth, the
estimated coefficients of variabld€D, and DEF, are respectively -0.4% and -0.7%
(and significant at the 1% level). The same regpessoefficients in a predictive
guantile 50% regression are estimated both at ONI#eover, the coefficient for
TED, is not significant at 5%. Hence, financial intediaion stress has a
significantly stronger elasticity with real actiyiat the lower tail of the distribution.

Figure 6 presents the conditional quantiles of 2t6%0% of the output in two

different states of nature (quantiles estimatedMarch 2006 and October 2008) and

10



their difference. It appears that financial striespacts not only the location but also
the shape of the conditional distribution of adyiwith an extreme risk of bad outputs

(recession) more pronounced.

3. CONCLUSION

We apply quantile regressions to estimate VaR dpwiu Our objective is to
gauge dynamically the tail risk of real activityuOresults, based on monthly data
from the US over the period 1975M3-2012M7, suggisit the shape of the
distribution of output evolves over time and notyorts location and its dispersion.
Moreover, financial intermediation stress has aificantly stronger elasticity with
real activity at the lower tail of the distribution

Hence, dysfunctions of financial intermediariesdiea extreme risk of negative
output,i.e. higher probability of severe recession.

These results strongly suggest that monetary pshoyld not neglected financial
intermediation disruptions, in a risk managemermmiework, since they can be
responsible, or at least early warning indicatofgutput tail risks.

Our analyzes obtained over the US, where bankitgrnmediation is relatively
less developed than direct one, should now be dgteto other countries in Europe in

order to confirm our results.
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TABLE 1.

GRANGER CAUSALITY TESTS

Null hypothesis | F-Stat. | p-Stat. Null hypothesis | thtS | p-Stat. Null hypothesis F-Stat. p-Stat.
Cp.ﬁg P 4,65 0,00 KC ?22 cPI 3,00 0,02 PSP?XS TED 0.87 0.48
P 325 cpl 5,65 0,00 Pl 5% ke 3,25 0,01 TED SX% psp 0.56 0,69
LlBORﬁE P 2,56 0,04 Hpﬁi LIBOR 2,50 004 6810% TED 10,75 0,00
P >33 LiBOR 4,88 0,00 LIBOR 55 Hp 0,79 053 | TED 3% G810 265 0,03
Hp 32X 1 6,70 0,00 TED 52X LBor 1624 00 | vix 325 TeD 1,04 0,38
P 23S e 2,57 0,04 LBor >XX TED 1156 000 | TED SXX Vi 1,29 0,27
TED?XS P 2,41 0,05 DEF% LIBOR 542 0,00 KC ?ZETED 0,42 0,79
P =% TeD 2,98 0,02 LBOR 5X¥ per 1003 0,00 TED X8 ke 13,39 0,00
DEF 533 1P 9,06 0,00 PsPSXS LIBOR 0,95 043 | pspiXY DEF 7.60 0,00
P ﬁg DEF 4,31 0,00 LIBOR % PSP 0.38 0.82 DEF% PSP 0.36 0,84
psP XS 1P 1408 00 | op1o>X% LBOR 868 000 | GB10>XX DEF | g3 000
|Pﬁi PSP 6,72 0,00 LIBOR % GBlo  3.50 001 DEF% GB10 1,80 0,13
G810 223 1P 4,46 0,00 vix =% LiBoR 0,51 073 | vix 3=% DEF 2,65 0,03
P ?ZE GB10 0,33 0.86 LIBOR ?22 VIX 0,88 0,48 DEF% VIX 6.78 0.00
VIX ?22 P 6.48 0,00 DEF?ZE TED 1,42 023 KC }22 DEF 11,94 0,00
P >SEV|X 2,51 0,04 TED ?22 DEF 12,90 0,00 DEF% KC 287 0,02
KC ﬁg P 9,25 0,00 KC % LIBOR 5,01 0,00 6810% PSP 0,35 0,85
P ﬁg KC 328 0,01 LIBOR % KC 10,98 0,00 PSP% GB10 3,36 0,01
UBOR 2R3 cp 055 070 | Tep X5 e 1,63 016 | vix 2X5 psp 187 012
cPl 5X¥ LIBOR 388 0,00 Hp X3 TED 0,90 046 | psp =% vix 2107 0,00
Hpﬁi CPI 0,55 0.70 DEF% HP 0.90 0.47 KC % PSP 0.40 0,81
Cp.ﬁg HP 2,04 0,09 HP?ZE DEF 3,79 0,00 PSP?XS KC 418 0,00
TED X5 CPi 0,83 050 | pspi=S p 1194 000 vix 5= cB1o 0,90 0,46
cpl X8 TED 3,56 0,01 Hp X% psp 2,08 008 | 61058 viX 118 0,32
DEF 5X% cpl 2,42 005 | cp102X% Hp 0,67 0,61 ke =% B0 331 0,01
cPl 5X% DEF 5,62 0,00 Hp 53 G810 0,36 08 | opl0>=% ke 6.81 0,00
PsP>RE cri 703 00 | vix XX wp 26 007 | kB VK | sge0 | oco
cPi SES psp 452 0 | e XX vix 583 00 | wix 3 ke | 56 | o
G810 225 Cpi 0,65 0,63 ke 25 wp 1,65 016 | vix 2X5 pEF 2,65 0,03
cplﬁg GB10 5,90 0,00 HP?ZE KC 248 0,04 DEF% VIX 6,78 0,00
vix 325 cpi 0,67 061 | per 2= TED 1,42 0,23 ke >=% DEF 11,94 0,00
cpl 8 Vi 2,67 0,03 TED S5 DEF 12,90 0,00 DEF 5X% ke 2,87 0,02

Source:Datastream, BloombergndFRED Il databasemonthly data from 1975M03 to 2012M07. The symhok=s B

indicates that under the null hypothesis the végidbdoes not Granger cause the varidhl&ignificant p-values appear in
bold face. Calculations by the authors.
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TABLE 2
PREDICTIVE REGRESSIONS OF THE INDUSTRIAL PRODUCTIGBROWTH
(VAR95%)

# Const. CPI 4P, LIBOR GB1Q HP; PSR TED DEF SR Hit Freq.
(t-stat)  ¢-stat) (-stat)  ¢-stat) (-stat) (-stat) (-stat) (-stat) (-stat)  ¢-stat) [Hit Size]

Panel A: models with autoregressive term

1 0008 0000 0529 0.000 0.047
(-5.399) (-0.826) (4.519) (-1.292) [0.101]
2 -0010 -0.001 0530 -0.001 0.001 0.042
(-4.821) (-1.534) (4.299) (-1.375) (0.979) [0.091]
3 -0003 0000 0231 -0001 0000 0000 0.000 0.065
(-2.069) (-0.825) (2.493) (-4.138) (1.247) (2.128) (1.493) [0.120]
4 -0004 0000 0275 0000 0.00 0000 0.000 -0.004 0.060
(-3.363) (-0.817) (3.128) (0.982) (-1.046) (1.552) (1.562) (-3.721) [0.090]
5 -0003 -0.001 0061 0000 0.000  0.000 -0.006 0.065
(-2.400) (-2.096) (0.736) (1.261) (-0.747) (0.752) (-3.524) [0.125]
6 0000 0000 0138 -0.001 000l 0.000 0000 -0.001 -0.007 0.056
(-0.785) (-1.477) (1.710) (-1.908) (1.980) (1.456) (0.906) (-1.063)-4.851) [0.089]
7 0000 -0001 0.078 -0001 0001 0.000 -0.001 -0.007 0.058
(0.483) (-2.461) (0.894) (-2.909) (2.854) (1.408) (-0.683) (-4.830) [0.099]
8 -0.001 0000 0243 0000 0000 0000 (0.000) -0.002-0.004 0.000 0.058

(-0.641) (-1.323) (2.589) (-0.791) (0.713) (0.817) 0.620 (-1.319)-2.448) (-0.588)  [0.103]
9 -0006 -0.001 0325 -0001 0.001 0000 (0.000) -0.001 -0.001 -0.001 58.0
(-2.860) (-1.857) (3.546) (-1.753) (1.863) (0.599) 1.870 (-0.589)-0.591) (-1.778)  [0.094]

10  0.000 0.000 0175 -0.001 0001 0.000 (0.000) -0.001 -0.007 0.005 0.058
(0.687) (-0.966) (2.001) (-1.772) (1.970) (0.696) 0.789 (-1.016)-4.810) (0.757)  [0.095]
11 0.000 0.000 0144 -0001 0001 0.000 (0.000) -0.001 -0.007 -0.039 0.054
(0.887) (-1.585) (1.826) (-2.113) (2.095) (1.118) -0.674 (-0.875)-5.494) (-0.857)  [0.085]
12 0000 -0.001 0089 -0.001 0001 0.000 (0.000) -0.002 -0.006 0.000 0.054

(0.592) (-1.816) (1.209) (-1.726) (2.213) (1.729) 0.712 (-1.245)-4.509) (-0.732)  [0.095]

Panel B: models without autoregressive term

13 -0.006  0.000 0.000 0.051
(-3.217) (-0.736) (-0.923) [0.177]
14  -0016 -0.001 -0.002 0003 0.049
(-6.791) (-1.852) (-4.590) (4.884) [0.122]
15  -0.006  0.000 0001 0001 0000 0.000 0.056
(-2.971) (-0.789) (-3.732) (2.262) (2.799) (0.852) [0.126]
16 -0.008  0.000 0.000 0001 0000 0.000 -0.005 0.049
(-5.181) (-0.711) (-0.902) (3.278) (2.058) (1.510) (-3.859) [0.104]
17  -0010 -0.001 0.000 0.001  0.000 -0.008 0.047
(-6.787) (-1.632) (1.111) (4.681) (3.093) (-6.573) [0.090]
18 0.000 -0.001 0001 0001 0.000 0.000 0.000 -0.007 0.056 0.056
(0.684) (-1.899) (-4.246) (3.475) (0.690) (1.706) (0.787) (-5.974Y0.097)  [0.097]
19 0.000 -0.001 0001 0001  0.000 -0.002  -0.006 0.058
(-0.796) (-1.868) (-2.011) (2.361) (2.799) (-1.358) (-4.236) [0.096]
20  0.000 -0.001 0001 0001 0.000 0.000 -0.002 -0.007 0.000 0.056
(0.798)  (-2.650) (-2.078) (2.706) (0.606) (1.345) (-1.104)-5.130) (-0.793)  [0.089]
21 0.000 -0.001 -0.001 0001 0.000 0000 -0.002 -0.007 0.000 0.054
(0.849) (-2.658) (-1.715) (2.430) (0.809) (0.866) (-1.246)-5.481) (0.756)  [0.090]
22 0.000 -0.001 0001 0001 0.000 0.000 -0.002 -0.007 0.001 0.056
(0.721) (-2.214) (-2.096) (2.648) (1.346) (0.679) (-1.019X-4.913) (0.641)  [0.091]
23 0.000 -0.001 0.000 0001 0.000 0.00 -0.003-0.006 -0.003 0.054
(0.941) (-2.072) (-1.086) (1.664) (1.209) (0.898) (-1.941)-4.214) (-0.747)  [0.091]
24 0.000 -0.001 0001 0001 0.000 0.000 0.000 -0.008 0.000 0.054
(0.475) (-2.976) (-3.368) (2.997) (0.668) (1.639) (-0.498)-5.902) (-0.608)  [0.089]

Source:Datastream Bloombergand FRED 1l databasemonthly data from 1975M3 to 2012MO07. Significant
coefficients (at 5%) appear in bold face. The caolld$corresponds respectively to the variat8¢skKC, PBKS
RBKS2andVIX . Computations by the authors.
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TABLE 3
PREDICTIVE REGRESSIONS OF THE INDUSTRIAL PRODUCTIGBROWTH

(VAR50%)
# Const. CPl AP, LIBOR GB1Q HP; PSR TED DER SR Hit Freq.
(t-stat)  ¢-stat) (-stat) ¢-stat) (-stat) (-stat) (-stat) (-stat) (-stat) (-stat) [Hit Size]
Panel A: models with autoregressive term
1 0.002 -0.001  0.298 0.000 0.500
(4.408) (-4.654) (6.773) (-1.978) [1.092]
2 -0.001 -0.001 0.261 -0.001 0.001 0.498
(-0.887) (-5.045) (6.805) (-5.328) (4.985) [1.055]
3 -0.001 -0.001 0219 -0.001  0.002 0.000 0.000 0.500
(-1.907) (-5.56) (4.919) (-8.012) (7.725) (2.401) (2.628) [1.008]
4 -0.001 -0.001 0.211 -0.001 0.001 0.000 0.000 -0.001 0.502
(-1.428) (-4.721) (4.706) (-4.499) (6.977) (1.943) (1.794) (-1.756) [1.021]
5 -0.001 -0.001 0.245 -0.001 0.001 0.000 -0.001 0.500
(-1.128) (-4.708) (5.96) (-3.686) (6.127) (2.457) (-1.701) [1.034]
6 0.000 -0.001 0.209 -0.001 0.002 0.000 0.000 -0.001 -0.001 0.500
(-0.674) (-4.4) (4.536) (-5.485) (7.835) (1.37) (1.497) (-0.968)(-2.308) [0.996]
7 0.000 -0.001 0.184 -0.001 0.001 0.000 -0.001 -0.002 0.496
(0.943) (-3.698) (4.01) (-4.341) (5.878) (1.664) (-0.924) (-2.573) [1.015]
8 -0.001 -0.001 0.172 -0.001  0.002 0.000 0.000 -0.001  -0.001 0.000 0.498
(-0.922) (-4.532) (3.887) (-4.407) (7.052) (1.013) (1.378) (-1.074)-1.257) (-0.916)  [0.994]
9 0.000 -0.001 0.164 -0.001 0.002 0.000 0.000 0.000 -0.001 -0.001 0.500
(-1.003) (-4.922) (3.704) (-5.342) (6.528) (0.967) (1.319) (0.758) (-1.793)-1.36) [0.998]
10 0.000 -0.001 0.185 -0.001 0.002 0.000 0.000 -0.001 -0.002 -0.002 0.502
(-1.106) (-5.098) (4.39) (-5.022) (7.448) (1.45) (1.469) (-1.046)(-2.336) (-0.828)  [0.971]
11 0.000 -0.001 0169 -0.001  0.002 0.000 0.000 -0.001 -0.002 -0.023 0.498
(0.953) (-4.875) (3.687) (-5.437) (7.748) (1.03)  (1.69) (-0.845)(-2.698) (-0.904)  [0.97]
12 0.000 -0.001 0.205 -0.001 0.002 0.000 0.000 0.000 -0.002 0.000 0.496
(0.747) (-4.505) (4.601) (-5.422) (7.055) (1.369) (1.552) (-0.641)-2.377) (-0.664)  [0.979]
Panel B: models without autoregressive term
13 0.003  -0.001 0.000 0.496
(5.819) (-3.184) (-1.946) [1.15]
14 -0.001 -0.001 -0.001  0.001 0.498
(-1.04) (-5.314) (-7.152) (7.016) [1.07]
15 -0.002 -0.001 -0.002 0.002 0.000 0.000 0.493
(-3.347) (-6.938) (-11.15) (11.24) (2.949) (3.684) [0.994]
16 -0.002 -0.001 -0.001 0.002 0.000 0.000 -0.002 0.502
(-2.396) (-5.62) (-6.05) (10.32) (2.525) (2.775) (-2.651) [1.017]
17 -0.001 -0.001 -0.001  0.002 0.000 -0.002 0.500
(-1.849) (-5.616) (-4.675) (8.284) (2.517) (-2.69) [1.025]
18 0.000 -0.001 -0.001  0.002 0.000 0.000 -0.001 -0.002 0.502 0.502
(1.695) (-4.865) (-6.383) (10.26) (1.834) (1.741) (-1.983)-3.653) (0.967) [0.967]
19 0.001 -0.001 -0.001 0.002 0.000 -0.001 -0.003 0.498
(1.478) (-3.806) (-4.095) (7.09) (1.263) (-1.586) (-4.114) [1.014]
20 0.000 -0.001 -0.001 0.002 0.000 0.000 -0.001 -0.003 0.000 0.496
(1.446) (-4.385) (-5.979) (9.68) (1.307) (1.53) (-1.366) (-3.71) (-1.311) [0.974]
21 -0.001 -0.001 -0.001  0.002 0.000 0.000 0.000 -0.002 -0.001 0.498
(-1.038) (-4.378) (-7.119) (8.728) (1.056) (1.752) (0.978) (-2.067(-1.999)  [0.988]
22 0.000 -0.001 -0.001 0.002 0.000 0.000 -0.001 -0.002 0.003 0.498
(1.177) (-4.455) (-5.878) (9.195) (1.723) (1.994) (-1.713)-3.418) (1.054) [0.978]
23 0.000 -0.001 -0.002 0.002 0.000 0.000 0.000 -0.003 0.002 0.500
(0.872) (-4.957) (-1058) (11.12) (2.147) (2.095) (0.822) (-5.004)0.844) [0.945]
24 0.000 -0.001 -0.001  0.002 0.000 0.000 -0.001 -0.002 0.000 0.507
(1.188) (-4.695) (-5.18) (8.75) (1.785) (1.702) (-1.555)-3.127) (-1.274)  [0.983]

Source:Datastream Bloombergand FRED 1l databasemonthly data from 1975M3 to 2012MO07. Significant
coefficients (at 5%) appear in bold face. The call®$corresponds respectively to the varialB¢sKC, PBKS
RBKS2andVIX . Computations by the authors.
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TABLE 4
PREDICTIVE REGRESSIONS OF THE INDUSTRIAL PRODUCTIGBROWTH
(VAR05%)

# Const. CPl AP, LIBOR GB1Q HP; PSR TED DEFR SR Hit Freq.
(t-stat)  ¢-stat) (-stat) (-stat) (-stat) (-stat) (-stat) (-stat) (-stat) ¢-stat) [Hit Size]

Panel A: models with autoregressive term

1 0011 0000 -0.020 0.000 0.049
(8.101) (-0.153) (-0.219) (1.254) [0.066]
2 0000 0000 -0.042 -0.003 0.004 0.060
(0.436) (0.431) (-0.538)(-6.535) (8.514) [0.079]
3 0004 0.000 -0.072 -0.003 0004 0.000 0.000 0.036
(1.977) (-0.74) (-1.213)(-5.972) (6.668) (1.815) (1.849) [0.035]
4 0001 0000 -0.224 -0.003 0004 0000 0.000 0.000 0.056
(0.521) (-1.605) (-2.748) (-8.437) (11.20) (3.226) (0.514) (-0.441) [0.064]
5 0004 0000 -0.116 -0.002 0002  0.000 0.002 0.054
(2.205) (-0.941) (-1.537) (-4.116) (5.878) (0.818) (1.132) [0.067]
6 0000 0000 -0181 -0002 0003 0.000 0000 -0.002 0.002 0.069
(-0.537) (-0.961) (-2.236) (-3.71) (8.437) (0.631) (0.59) (-1.317)(1.49) [0.072]
7 0000 0000 -0.055 -0.00L 0002  0.000 -0.001  0.005 0.058
(0.729) (-1.56) (-0.961) (-3.61) (6.227) (2.328) (-1.039)(3.951) [0.079]
8 0001 -0001 -0.129 -0002 0003 0.000 0000 -0.002 0004 -0.001 0.054
(1.043) (-2.36) (-1.677)(-4.193) (7.215) (1.017) (2.53) (-1.199)(2.664) (-1.03)  [0.061]
9 0002 0000 -0.083 -0002 0004 0.000 0000 -0.001 -0.001 -0.001 0.058
(1.054) (-0.968) (-0.933) (-4.453) (7.549) (0.909) (2.688) (-0.769)(-0.74) (-1.55)  [0.073]
10 0.000 0.000 -0.108 -0.002 0003 0000 0.000 0.000 0003 0.009 0.054
(-0.968) (-1.545) (-1.593) (-7.417) (8.077) (2.128) (1.532) (1.332) (2.823) (1.516) O]
11 0.000 -0.001 -0.095 -0.002 0003 0000 0.000 0001 0004 -0.024 0.056
(0.663) (-1.935) (-1.303) (-6.469) (8.141) (2.298) (1.228) (0.975) (3.021) (-0.863) .Of®]
12 0.000 0000 -0.172 -0002 0004 0.000 0000 -0.002 0.001  0.000 0.058

(0.716) (-0.941) (-1.884) (-4.267) (9.537) (1.131) (0.826) (-1.582)(0.902) (-0.623)  [0.069]

Panel B: models without autoregressive term

13 0012  0.000 0.000 0.049
(9.055) (-0.687) (0.856) [0.07]
14 0007  0.000 0.000 0.001 0.054
(4.262) (-0.897) (-1.274) (2.995) [0.054]
15  0.000  0.000 -0.003 0004 0000  0.000 0.056
(1.544) (-1.099) (-8.167) (11.97) (2.625) (1.728) [0.079]
16  0.000  0.000 0003 0004 0000 0.000 0.001 0.060
(1.191) (-1.799) (-7.516) (11.73) (0.961) (1.944) (1.332) [0.073]
17 0004  0.000 -0.002 0003  0.000 0.001 0.054
(2.058) (0.879) (-4.519) (5.436)  (1.499) (1.176) [0.062]
18  0.000 -0.001 0003 0004 0000 0000 0003 0.002 0.051 0.051
(-1.501) (-1.699) (-8.403) (11.28) (3.179) (2.361) (2.717) (1.626) (0.071) O]
19  0.002  0.000 0001 0003  0.000 -0.003 = 0.002 0.054
(1.214) (-1.653) (-2.753) (5.763) (1.969) (-2.486) (1.961) [0.068]
20 0.000  0.000 -0.002 0003 0000 0000 0.00 0.000 0.000 0.063
(1.379) (0.813) (-5.818) (10.74) (-1.617) (2.659) (-1.808) (1.438) (1.685)  [0.084]
21 0.001  0.000 0002 0003 0000 0000 -0.001 0.003 -0.002 0.049
(1.247) (-1.052) (-4.124) (6.862) (1.326) (0.932) (-1.023)(2.265) (-2.296)  [0.066]
22 0.000  0.000 0002 0004 0000 0000 0.001 0002 0014 0.054
(-0.645) (-1.135) (-7.467) (9.382) (2.166) (1.009) (1.075) (1.516) (1.489) ORZ]
23 0.001  0.000 0002 0003 0000 0000 -0.002 0003 -0.112 0.051
(1.043) (-1.059) (-3.437) (6.642) (1.371) (1.575) (-1.554)(2.228) (-1.809)  [0.07]
24 0.000  0.000 0002 0002 0000 0000 0000 0003 0.000 0.058
(-1.308) (-1.047) (-5.037) (6.85) (1.486) (1.449) (1.582) (3.08) (-1.346)  EID

Source:Datastream Bloombergand FRED 1l databasemonthly data from 1975M3 to 2012MO07. Significant
coefficients (at 5%) appear in bold face. The call®$corresponds respectively to the varialB¢sKC, PBKS
RBKS2andVIX . Computations by the authors.
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Fig. 1. Quantile regression functipn (L)
Source: lllustration by the authors.
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Computations by the authors.
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Appendix 1. Complementary Results

TABLE A.1.
CORRELATION MATRIX

P CPI LIBOR HP PSP GB10 PBKS RBKS2 TED DEF VIX C K SL

IP 1.00 -0.08 0.28 0.55 0.72 0.07 0.64 -0.14 0.21 80.3 -0.16 -0.12 -0.21
CPI -0.08 1.00 0.05 -0.07 0.15 0.13 0.04 0.05 0.04 0.24 -0.07 0.14 0.14
LIBOR 0.28 0.05 1.00 0.26 0.22 0.92 0.22 -0.14 0.82 0.30 -0.07 0.58 0.56
HP 0.55 -0.07 0.26 1.00 0.33 0.14 0.76 -0.37 0.04 7-0.3 -0.51 -0.33 -0.36
PSP 0.72 0.15 0.22 0.33 1.00 0.07 0.68 -0.17 0.12 -0.26 -0.18 -0.05 -0.18
GB10 0.07 0.13 0.92 0.14 0.07 1.00 0.12 -0.17 0.69 0.34 -0.11 0.53 0.56
PBKS 0.64 0.04 0.22 0.76 0.68 0.12 1.00 -0.42 0.05 -0.38 -0.45 -0.28 -0.34
RBKS2 -0.14 0.05 -0.14 -0.37 -0.17 -0.17 -0.42 1.00 0.06 0.35 0.35 0.29 0.25
TED 0.21 0.04 0.82 0.04 0.12 0.69 0.05 0.06 1.00 051 .130 0.78 0.77
DEF -0.38 0.24 0.30 -0.37 -0.26 0.34 -0.38 0.35 0.51 001. 0.44 0.85 0.86
VIX -0.16 -0.07 -0.07 -0.51 -0.18 -0.11 -0.45 0.35 0.13 0.44 1.00 0.46 0.42
KC -0.12 0.14 0.58 -0.33 -0.05 0.53 -0.28 0.29 0.78 850. 0.46 1.00 0.97
SL -0.21 0.14 0.56 -0.36 -0.18 0.56 -0.34 0.25 0.77 860. 0.42 0.97 1.00

Source:Datastream Bloomberg and FRED Il databaseonthly data from 1975M03 to 2012MQP: industrial productionCPI: consumer price index,|BOR Libor 3 month rateHP: house
price index,PSP. S&P500 indexGB1Q 10 year Treasury ratBBKS banking sector equity indeRBKS2 volatility of the banking sector equity indexust (monthly squared returng)ED:
Ted spreadDEF: Moody's BAA — AAA spread)VIX: implied volatility of the S&P index\(IX), KC: Financial stress index of the Kansas-City F&ld,Financial stress index of the Saint-Louis
Fed. Computations by the authors.
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Appendix 2. Data reconstruction

The VIX was rebuilt before 1990 from the cross-wexl volatility of the S & P 500.
Figure A.1 shows on the period of availability dketVIX, the VIX itself and its
reconstruction from the cross-volatility.

Composite indicators of financial stress of the dratl Reserve of St. Louis and
Federal Reserve Bank of Kansas City are calculaydérincipal Component Analysis
(PCA). The weekly index Fed Saint-Louis is condigdcfrom 18 data sets including
data from 1994 interest rate (effective rate of Heeleral Reserve rate 2 years, 10
years, 30-year U.S. Treasury etc..) data rate dpr@aeld curve Treasury yield curve
corporate, Ted spread, etc..) and various data (@lAtility index bond market, etc.)..
The monthly index of the Kansas City Fed is itselfistructed from 11 data sets since
February 1990 including data rate spreads mears gpeead, spread AAA and 10-
year Treasury, etc..) and measures based on cumreamticipated behaviour of asset
prices (VIX correlation between stock returns ameldg of Treasury bonds, etc.)..
These two indicators were reconstructed until thelye1990s from a principal
components analysis on our other indicators ofnitie stress. The comparison of
these two indicators with their reconstruction tappears in Figure A.2 shows these
indicators are highly correlated in periods of streven if level differences appear in
situations "normal".
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Fig. A.1. Implied volatility (VIX) and its complatn based on the cross-volatility of
the S&P500 equity index over the period 1990M0120Q7

Source:Datastream Bloombergand FRED Il databasemonthly data from 1975M3
to 2012M07. Computations by the authors.
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Fig. A.2. Financial stress indices (Saint-Louis fmad Kansas City Fed) and their
completion over the period 1994M01-2012M07

Source:Datastream Bloombergand FRED Il databasemonthly data from 1975M3
to 2012M07. Computations by the authors.
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