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We estimate Value-at-Risk of output using quantile regressions. Our 
objective is to gauge dynamically the tail risk of real activity. We find 
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stress has a significantly stronger elasticity with real activity at the 
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Since at least Engle (1982) and Stock and Watson (2002), we know that the 

conditional variance of future output and inflation evolves over time. However, in 

these seminal contributions, the risk of real activity and inflation is implicitly 

considered as symmetric. In this paper, we investigate the time evolution of the 

conditional distribution of macroeconomics variables with a special interest on the 

extreme tails of the output.  

The conduct of monetary policy has been recently associated to a risk 

management practice both in monetary policy statements (Greenspan, 2003; Mishkin, 

2008) and in academic research (Kilian and Manganelli, 2008). This risk management 

perspective of the monetary policy is directly inspired by the literature on robust 
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control (Hansen and Sargent, 2003 and 2007). The key idea of robust control is that 

policy-making should aim at minimizing the consequences of worst-case scenarios1. 

Thus Federal Reserve Board Chairman Alan Greenspan in 2003 declares that 

“A central bank seeking to maximize its probability of achieving its goals is driven, I 

believe, to a risk-management approach to policy. By this I mean that policymakers 

need to consider not only the most likely future path for the economy but also the 

distribution of possible outcomes about that path” (Greenspan 2003).  

The common practice of risk management requires controlling the probability 

of catastrophe. For a financial intermediary, the focus is on reducing the risk of 

significant monetary loss. For a central banker, it means acting to reduce the chances 

that output or the price level will be substantially below trend. Because of their focus 

on the conditional mean of the quantities being models, traditional time-series 

econometric tools are ill-equipped to address the questions that are foremost in the 

minds of policymakers who adopt such a risk management perspective. 

To control risk in financial institutions, risk managers employ the concept of 

Value-at-Risk (VaR). VaR measures the worst possible loss over a specific time 

horizon, at a given probability2. Hence, our objective is to propose such VaR estimates 

on output to gauge and explain tail macroeconomic risks. 

We pay a special attention to financial stress factors in our estimates. Indeed, 

the recent financial turmoil featured a risk in the ability of financial institutions to 

ensure their financial intermediary role between lenders and borrowers for the non-

financial sector (households and businesses) but also between financial institutions 

themselves. 

The two reference models developed to analyze business cycle fluctuations in 

developed economies – the real business cycle models and dynamic neo-Keynesian 

model – confer to financial intermediaries a minor role, and the macroeconomic 

                                                 
1. Even if the required policy eventually appears sub-optimal considering ex post that the large-scale 

shocks have not materialized, a risk-management approach assesses that the associated cost of buying 
an insurance is small compared to the alternative 

2. The VaR has been widely accepted since the 1990s. It was first popularized by JP Morgan and 
later by Risk-Metrics Group in their risk management software. VaR became so popular that it was 
approved by bank regulators as a valid approach for calculating risk charges. There are two well known 
limitations of VaR measures: (a) they not take into account the size of tail losses; and (b) they lack 
“coherence” in the sense of Artzner et al. (1999), since they do not satisfy the sub-additivity property 
required for consistent risk ordering. This means that VaR may be incapable of identifying 
diversification opportunities. Although there has been a good deal of criticism of VaR in the literature 
because of these shortcomings, it remains a widely used method for risk measurement by practitioners 
mainly because it has an intuitive interpretation, it can be easily back-tested, and it is required by 
regulation.  
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literature revealed little about the relationship between financial intermediation and 

macroeconomic volatility. 

In recent years however, many contributions have emerged to (1) attempt to 

link theoretical financial factors – including, but not limited to, financial 

intermediation – to macroeconomic fluctuations and the optimal response of monetary 

policy financial shocks, (2) assess the cost of failures of financial intermediaries 

generally are of direct relevance to the costs of banking and financial crises. 

The idea that the financial sector can amplify the business cycle dating at least to 

Fisher (1933). Traditionally, financial shocks were apprehended through the channel 

of the cost of credit (or the interest rate channel) and wealth effects (see, e.g., Lettau 

and Ludvigson, 2004). Since the work developed by Bernanke and Blinder (1988) and 

Bernanke and Gertler (1995 and 1996), it is apparent that financial imperfections 

resulting from information asymmetries, contribute to the transmission but also the 

amplification of monetary shocks, real or financial. More recently, studies have shown 

that the analytical framework of the financial accelerator could be extended agents, 

non-financial intermediaries. This new financial accelerator describes how the 

financial system amplifies the impact of the real economy. 

The new financial accelerator mechanism has been clearly illustrated by Adrian 

and Shin (2008) - a negative shock to asset prices depleted bank capital and leverage 

increases. Since it is difficult to raise new capital in times of crisis, when banks tend to 

liquidate their assets. These disposals impacting asset prices then propagating the 

initial shock. This mechanism may have a strong impact on economic activity, 

especially when several banks simultaneously shock, which is typical of systemic 

events. In this context, the multiplication factor is leverage - when banks are 

themselves indebted, the initial shock and reducing negative asset price follows can 

lead to massive liquidations of assets, which accentuates the lower prices and possibly 

trigger a vicious circle, especially if banks want to restore a target debt level. 

This is the meaning of the concerns raised in 2008-2009 on the risk of a credit 

crunch, that is to say a rationing of credit following the blocking of the interbank 

market. 

We estimate dynamically, using quantile regressions, the probability 

distribution of future output, as opposed to mean and/or variance point estimates. This 
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framework allows the shape of the distribution of output to be assessed conditionally 

on the current state of the economy and is totally model based and judgement free3. 

Quantile regression (Koenker and Basset, 1978; Koenker, 2005) may be 

considered as a natural extension of classical least squares estimation of conditional 

mean models to the estimation of an ensemble of models for conditional quantile 

functions. The central special case is the median regression estimator that minimizes a 

sum of absolute errors. The remaining conditional quantile functions are estimated by 

minimizing an asymmetrically weighted sum of absolute errors. Altogether the 

ensemble of estimated conditional quantile functions offers a much more complete 

view of the effect of covariates on the location, scale and shape of the distribution of 

the response variable. 

The rest of the paper is organized as follows. In section 1, we present the 

empirical framework. In particular, Section 1.1 briefly exposes the quantile regression 

methodology. Section 1.2 presents the data and Section 1.3 discusses some 

preliminary analyses based on a simple VAR methodology. Section 2 presents the 

empirical results from quantile regressions. Section 3 summarizes our main 

conclusions. 

 

 

1. THE EMPIRICAL FRAMEWORK 

 

1.1 Quantile Regression 

 

In order to address how changes in a set of conditioning variables influence the 

shape of the distribution of a dependent variable, Koenker and Bassett (1978) 

                                                 
3 A number of institutions construct indicators of forecast uncertainty that are related to the current state 
of the economy by skewing and rescaling measures of past-forecast performance using assessment of 
risk and simulations. The BoE produces asymmetric fan charts for its inflation and GDP forecasts, by 
skewing and rescaling past forecast errors based on the MPC members’ judgment of risks. In a 
somewhat different manner the Bank of Japan aggregates distribution forecasts of its board members. 
The IMF global growth forecasts for the World Economic Outlook are not based on an explicit model 
(being an aggregate of individual country forecasts); hence asymmetric fan charts are based on an 
automated assessment of risks related to four global risk factors: financial conditions (term spread and 
stock market returns), oil prices and global interest rates (Elekdag and Kannan, 2009). The volatility 
and market expectations on developments of these risk factors are used to rescale and skew the past 
forecast errors to arrive at a probability distribution. Alternatively, the Norges Bank, the Bank of 
Canada (for longer horizons) and on some occasions the CPB (Lansen and Krankendonk, 2008), use 
model-based stochastic simulations, where the confidence intervals are derived from shocking the 
underlying variables and model coefficients. 
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developed the concept of “quantile regression”. Quantile regression is designed to 

answer the following question: When a conditioning variable X  changes, what 

happens to the thτ  quantile of the distribution of Y ? 

Quantile regression can be viewed as an extension of classical Ordinary Least 

Squares (OLS hereafter). In quantile regression, the estimation of the conditional 

mean by OLS is extended to the similar estimation of an ensemble of models of 

various conditional quantile functions for a data distribution. Then, quantile regression 

can better quantify conditional distribution of ( )|Y x . The central special case is the 

median regression estimator that minimizes a sum of absolute errors. The estimates of 

remaining conditional quantile functions are obtained by minimizing an 

asymmetrically weighted sum of absolute errors where the weights are the function of 

the quantile of interest. Taken together, the ensemble of estimated conditional quantile 

functions of ( )|y x  offers a more complete view of the effect of covariates on the 

location, scale and shape of the distribution of the response variable. In the classical 

approach of OLS regression the conditional mean function, the function that describes 

how the mean of y  changes with the vector of covariates x , is (almost) all we need to 

know about the relationship between y  and x . Then, classical OLS is considered as a 

pure location shift model since it assumes that x  affects only the location of the 

conditional distribution of y , not its scale, or any other aspect of its distributional 

shape.  

Covariates may influence the conditional distribution of the response in myriad 

other ways: expanding its dispersion as in traditional models of heteroscedasticity, 

stretching one tail of the distribution, compressing the other tail, and even inducing 

multimodality. Explicit investigation of these effects via quantile regression can 

provide a more nuanced view of the stochastic relationship between variables, and 

therefore a more informative empirical analysis. 

Parameter estimation in quantile regression is the result of an optimization 

problem. To see how this works, recall that we can write down an OLS problem as an 

optimization problem where we minimize the sum of squared deviations of the fitted 

values for the dependent variable from the data. In the same way, the median quantile 

(0.5) in quantile regressions is defined through the problem of minimizing the sum of 

absolute residuals. The symmetrical piecewise linear absolute value function assures 

the same number of observations above and below the median of the distribution. 
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The other quantiles values can be obtained by minimizing a sum of 

asymmetrically weighted absolute residuals, thereby giving different weights to 

positive and negative residuals. Solving  
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where ( )τρ ⋅  is the tilted absolute value function (usually called “pinball loss 

function”), as illustrated in Figure 1, gives the thτ  sample quantile with its solution. 

Depending on the exact shape of the function( )τρ ⋅ , the optimization problem yields 

an estimate at a particular quantile. This quantile depends on the relative slopes on the 

two sides of the origin.  

Taking the directional derivatives of the objective function with respect to ξ  

(from left to right) shows that this problem yield the sample quantile as its solution. 

After defining the unconditional quantiles as an optimization problem, it is easy to 

define conditional quantiles similarly. Taking the least squares regression model for a 

random sample, 1 2, ,..., ny y y , we solve 
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which gives the sample mean, an estimate of the unconditional population mean. 

Replacing the scalar,µ , by a parametric function ( ),xµ β , and then solving 
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gives an estimate of the conditional expectation function ( )|E y x . 

Proceeding the same way for quantile regression, to obtain an estimate of the 

conditional median function, the scalar ξ  in the first equation is replaced by the 

parametric function ( ),xξ β , and τ  is set to ½. Finally, the estimation of the 99 
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percentile lines in addition to the standard “mean” line makes possible the production 

of not only a mean forecast, but a distribution of forecasts around this mean. Further 

insights into this robust regression technique can be obtained from Koenker and 

Basset (2005). 

Quantile regression has been applied in a variety of economic and financial 

problems. Applications include investigations of wage structure (Buchinsky and 

Leslie, 2010), wage mobility (Buchinsky and Hunt 1996), and educational attainment 

(Eide and Showalter 1998). Financial applications include Chan and Lakonishok 

(1992) and Engle and Manganelli (2004) to the problems of robust beta estimation and 

VaR respectively.  

 

 

1.2 Data 

 

Quantile regressions are implemented using monthly time series of the US for the 

period March 1975 - July 2012. All the series come from the FRED II Database of the 

Federal Reserve Bank of St-Louis and Datastream. The sample is constrained by the 

availability of the house price index.  

The main variables considered are: the index of industrial production, tIP , the 

index of consumer prices, tCPI , the 3-month interbank rate, tLIBOR , the 10 year 

interest rate, 10tGB , a house price index4, tHP , and equity prices (the S&P500 index), 

tPSP. 

In addition to these "traditional" variables, we considered several variables 

reflecting stress/health of financial intermediaries: a stock market index of the US 

banking sector (market capitalization weighted), tPBKS , the volatility of this index 

(quadratic monthly returns), 2tRBKS , an interbank spread (the Ted spread), tTED , 

the default spread (defined as the yield difference between Moody’s BAA and AAA 

corporate bonds), tDEF , the implied volatility of the S&P equity index, tVIX , and two 

                                                 
4. Note that the house price index is built from the Case-Shiller index and the OFHEO index before 
January 1987. 
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aggregate indicators of financial stress calculated by the Federal Reserve Bank of St. 

Louis and the Federal Reserve Bank of Kansas City, denoted tSL  and tKC 5. 

 

 

1.3 Preliminary analyses 

 

We investigate, as a first step, causality and relationships between the set of 

macroeconomic and financial conditions variables.  

The VAR model is estimated with 7 lags selected based on the AIC information 

criterion. Variables that include a (stochastic) tendency were detrending using a high-

pass filter (the industrial production index, the consumer price index, the stock price 

index and the house price index) since we focus on cyclical fluctuations. Given the 

strong correlation of the two aggregated indicators of financial stress ( tSL  and tKC ), 

we only consider the Stress index of the Kansas City Federal Reserve in our estimates 

of the VAR model6. 

Simple Granger causality tests appear in Table 1. It appears that financial stress 

indicators and industrial production have a double causality at the 1% and 5% 

significance level. Several variables also cause financial stress except the VIX, which 

is most often caused by other indicators of financial stress. Furthermore, some impulse 

response functions confirm the significant impact of financial shocks on output. 

 Figure 2 presents generalized impulse response functions of the industrial 

production growth and the equity index to a Ted spread shock. We used the method 

proposed by Pesaran and Shin (1998), which unlike traditionally used Cholesky 

decomposition, does not require orthogonalization of shocks and is independent of the 

order of the variables. For each variable, the shock is equal to one standard deviation. 

The time horizon of responses is 120 months which is about the time required for the 

variables return to their equilibrium levels. 

This analysis indicates that the effects of stress on the interbank market are 

significant on the activity and the stock market at the horizon of a few months. After 

                                                 
5 See the appendix for some details about data reconstruction for some variables. 
6 The correlation matrix of variables is shown in the appendix. Results obtained with the Stress index of 
the St Louis Federal Reserve are qualitatively similar. These results are available upon request. 
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this horizon, the shocks fade gradually although the confidence intervals are wide 

enough. Note that the impact on output is more durable than the stock price. 

For forecasters, it has become customary to present the point forecasts 

accompanied by a forecast density (fan chart)7. This realistic approach implicitly 

recognizes that it is impossible to predict with certainty. Confidence intervals and 

density forecasts were increasingly used to describe the uncertainty of any point 

forecast (see e.g., Tay and Wallis, 2000). 

Forecast densities are most often computed based on the dispersion of past 

forecast errors of the estimated model. They permit to view, from a fan chart, the 

uncertainty associated to predictions. Figure 3 shows such a fan chart of industrial 

growth forecasts calibrated on the standard deviation of past forecast errors of the 

VAR model.  

However, this kind of methodology as well as survey-based density forecasts do 

not provide a conditional, semiparametric or reproducible fan chart. On the one hand, 

most of the fan charts are unconditional: whatever the economic situation, the 

magnitude of the uncertainty represented is constant. On the other hand, the fan chart 

of the Bank of England (BOE) is not reproducible because it introduces subjectivity 

members of the BOE. 

 

2. EMPIRICAL RESULTS 

 

To overcome the difficulties of traditional density forecasts, we led, from quantile 

regressions, estimates of the density of output. 

Table 2 to 4 presents the results of quantile regressions for three quantiles (5%, 

50% and 95%) of the industrial production growth. Several multivariate regressions 

are examined. All variables are considered with a delay. 

Student statistics of the estimated coefficients are reported in parentheses and the 

last column presents two statistics to assess the relevance of the regressions carried 

out: the first one measures the frequency of hits for the VaR estimated and the second 

                                                 
7. Since 1996, the Bank of England publishes a density forecast for inflation in its quarterly Inflation 
Report, called “fan chart”. In France, INSEE publishes a fan chart forecast as part of the Gross 
Domestic Product (GDP) in his “Note de Conjoncture”. 
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one, the sum of the absolute value of these hits (shown in brackets). Hits are defined 

as exceedances of the estimated VaR. 

These results from Table 2 indicate that the introduction of financial health 

variables significantly impact the VaR95% of industrial production (quantile 5%). 

These variables appear to be significant and the measures of relevance predictions are 

improved. It appears, however, that model only including the default spread ( tDEF ) 

as a stress financial indicator achieves 5% quantile forecasts of industrial production 

equally satisfying. This result may be related to the smaller weight of the direct 

banking intermediation in the US than it is in the euro area. 

Figure 4 shows the evolution of the industrial production growth and 95% VaR 

estimated from the conditional specification including and not including, respectively, 

a financial stress indicator (here the regressions # 14 and # 16 in Table 2). This figure 

shows that the estimated quantile 5% in industrial production growth is significantly 

improved by the introduction of a financial factor (here the default spread, tDEF ). 

The observation that the financial stress variables are significant is confirmed by 

examining the absolute value of Hits of VaR estimated using two specifications # 14 

and # 16 in Table 1.  

Figure 5 shows the absolute values exceeding the 95% VaR conditional real 

activity without (upper figure) and with (lower figure) financial stress indicators. Hits 

appear less frequent and smaller amplitude when a financial stress indicator is 

introduced in the specification of the quantile regression. 

Moreover, a test of inequality between the estimated coefficients for different 

quantiles and a comparison of estimated quantiles in two different states of nature 

suggest that the first extreme quantile estimates (less than 15%) are more sensitive to 

financial health variables than other quantiles. For example, within specifications # 4 

and # 6 (Table 2) which predict the 5% quantile of industrial production growth, the 

estimated coefficients of variables tTED  and tDEF  are respectively -0.4% and -0.7% 

(and significant at the 1% level). The same regression coefficients in a predictive 

quantile 50% regression are estimated both at 0.1%. Moreover, the coefficient for 

tTED  is not significant at 5%. Hence, financial intermediation stress has a 

significantly stronger elasticity with real activity at the lower tail of the distribution. 

Figure 6 presents the conditional quantiles of 2.5% to 50% of the output in two 

different states of nature (quantiles estimated for March 2006 and October 2008) and 
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their difference. It appears that financial stress impacts not only the location but also 

the shape of the conditional distribution of activity with an extreme risk of bad outputs 

(recession) more pronounced. 

 

  

3. CONCLUSION 

 

 

We apply quantile regressions to estimate VaR of output. Our objective is to 

gauge dynamically the tail risk of real activity. Our results, based on monthly data 

from the US over the period 1975M3-2012M7, suggest that the shape of the 

distribution of output evolves over time and not only its location and its dispersion. 

Moreover, financial intermediation stress has a significantly stronger elasticity with 

real activity at the lower tail of the distribution.  

Hence, dysfunctions of financial intermediaries lead to extreme risk of negative 

output, i.e. higher probability of severe recession. 

These results strongly suggest that monetary policy should not neglected financial 

intermediation disruptions, in a risk management framework, since they can be 

responsible, or at least early warning indicators, of output tail risks. 

Our analyzes obtained over the US, where banking intermediation is relatively 

less developed than direct one, should now be extended to other countries in Europe in 

order to confirm our results. 
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TABLE 1.  

GRANGER CAUSALITY TESTS 
Null hypothesis F-Stat. p-Stat. Null hypothesis F-Stat. p-Stat. Null hypothesis F-Stat. p-Stat. 

  CPI ⇒  IP 4,65 0,00    KC ⇒  CPI 3,00 0,02   PSP ⇒  TED 0,87 0,48 

  IP  ⇒  CPI 5,65 0,00   CPI ⇒   KC 3,25 0,01   TED ⇒  PSP 0,56 0,69 

  LIBOR⇒   IP 2,56 0,04   HP ⇒  LIBOR 2,50 0,04   GB10 ⇒  TED 10,75 0,00 

  IP  ⇒ LIBOR 4,88 0,00   LIBOR ⇒  HP 0,79 0,53   TED ⇒  GB10 2,65 0,03 

  HP ⇒  IP 6,70 0,00   TED ⇒  LIBOR 16,24 0,00   VIX ⇒  TED 1,04 0,38 

  IP  ⇒ HP 2,57 0,04   LIBOR ⇒  TED 11,56 0,00   TED ⇒ VIX 1,29 0,27 

  TED⇒   IP 2,41 0,05   DEF ⇒  LIBOR 5,42 0,00    KC  ⇒ TED 0,42 0,79 

  IP  ⇒ TED 2,98 0,02   LIBOR ⇒  DEF 10,03 0,00   TED ⇒   KC 13,39 0,00 

  DEF ⇒  IP 9,06 0,00   PSP ⇒  LIBOR 0,95 0,43   PSP ⇒  DEF 7,60 0,00 

  IP  ⇒ DEF 4,31 0,00   LIBOR ⇒  PSP 0,38 0,82   DEF ⇒  PSP 0,36 0,84 

  PSP ⇒  IP 14,03 0,00   GB10 ⇒  LIBOR 8,68 0,00   GB10 ⇒  DEF 9,63 0,00 

  IP⇒   PSP 6,72 0,00   LIBOR ⇒  GB10 3,50 0,01   DEF ⇒  GB10 1,80 0,13 

  GB10 ⇒  IP 4,46 0,00   VIX ⇒  LIBOR 0,51 0,73   VIX ⇒  DEF 2,65 0,03 

  IP ⇒  GB10 0,33 0,86   LIBOR ⇒  VIX 0,88 0,48   DEF ⇒  VIX 6,78 0,00 

  VIX ⇒  IP 6,48 0,00   DEF ⇒  TED 1,42 0,23    KC ⇒  DEF 11,94 0,00 

  IP  ⇒ VIX 2,51 0,04   TED ⇒  DEF 12,90 0,00   DEF ⇒   KC 2,87 0,02 

   KC  ⇒ IP 9,25 0,00    KC ⇒  LIBOR 5,01 0,00   GB10 ⇒  PSP 0,35 0,85 

  IP ⇒   KC 3,28 0,01   LIBOR ⇒   KC 10,98 0,00   PSP ⇒  GB10 3,36 0,01 

  LIBOR ⇒  CPI 0,55 0,70   TED ⇒  HP 1,63 0,16   VIX ⇒  PSP 1,87 0,12 

  CPI ⇒  LIBOR 3,88 0,00   HP ⇒  TED 0,90 0,46   PSP ⇒  VIX 21,07 0,00 

  HP ⇒  CPI 0,55 0,70   DEF ⇒  HP 0,90 0,47    KC ⇒  PSP 0,40 0,81 

  CPI ⇒  HP 2,04 0,09   HP ⇒  DEF 3,79 0,00   PSP ⇒   KC 4,18 0,00 

  TED ⇒  CPI 0,83 0,50   PSP ⇒  HP 11,94 0,00   VIX ⇒  GB10 0,90 0,46 

  CPI ⇒  TED 3,56 0,01   HP ⇒  PSP 2,08 0,08   GB10 ⇒  VIX 1,18 0,32 

  DEF ⇒  CPI 2,42 0,05   GB10 ⇒  HP 0,67 0,61    KC⇒  GB10 3,31 0,01 

  CPI ⇒  DEF 5,62 0,00   HP ⇒  GB10 0,36 0,84   GB10 ⇒  KC 6,81 0,00 

  PSP ⇒  CPI 7,03 0,00   VIX ⇒  HP 2,16 0,07    KC ⇒  VIX 99,60 0,00 

  CPI ⇒  PSP 4,52 0,00   HP ⇒  VIX 5,83 0,00   VIX ⇒   KC 3,67 0,01 

  GB10 ⇒  CPI 0,65 0,63    KC ⇒  HP 1,65 0,16   VIX ⇒  DEF 2,65 0,03 

  CPI ⇒  GB10 5,90 0,00   HP ⇒   KC 2,48 0,04   DEF ⇒  VIX 6,78 0,00 

  VIX ⇒  CPI 0,67 0,61   DEF ⇒  TED 1,42 0,23    KC ⇒  DEF 11,94 0,00 

  CPI ⇒  VIX 2,67 0,03   TED ⇒  DEF 12,90 0,00   DEF ⇒   KC 2,87 0,02 

Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M03 to 2012M07. The symbol A ⇒  B 
indicates that under the null hypothesis the variable A does not Granger cause the variable B. Significant p-values appear in 
bold face. Calculations by the authors. 
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TABLE 2  

PREDICTIVE REGRESSIONS OF THE INDUSTRIAL PRODUCTION GROWTH 

(VAR95%) 
# Const. CPIt ∆IPt LIBORt GB10t HPt PSPt TEDt DEFt  SRt Hit Freq. 
  (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) [Hit Size] 

  
 Panel A: models with autoregressive term  

  
1 -0.008 0.000 0.529 0.000       0.047 
 (-5.399) (-0.826) (4.519) (-1.292)       [0.101] 
2 -0.010 -0.001 0.530 -0.001 0.001      0.042 
 (-4.821) (-1.534) (4.299) (-1.375) (0.979)      [0.091] 
3 -0.003 0.000 0.231 -0.001 0.000 0.000 0.000    0.065 
 (-2.069) (-0.825) (2.493)  (-4.138) (1.247) (2.128) (1.493)    [0.120] 
4 -0.004 0.000 0.275 0.000 0.000 0.000 0.000 -0.004   0.060 
 (-3.363) (-0.817) (3.128) (0.982) (-1.046) (1.552) (1.562) (-3.721)   [0.090] 
5 -0.003 -0.001 0.061 0.000 0.000 0.000  -0.006   0.065 
 (-2.400) (-2.096) (0.736) (1.261) (-0.747) (0.752)  (-3.524)   [0.125] 
6 0.000 0.000 0.138 -0.001 0.001 0.000 0.000 -0.001 -0.007  0.056 
 (-0.785) (-1.477) (1.710) (-1.908) (1.980) (1.456) (0.906) (-1.063) (-4.851)  [0.089] 
7 0.000 -0.001 0.078 -0.001 0.001 0.000  -0.001 -0.007  0.058 
 (0.483) (-2.461) (0.894) (-2.909) (2.854) (1.408)  (-0.683) (-4.830)  [0.099] 
8 -0.001 0.000 0.243 0.000 0.000 0.000 (0.000) -0.002 -0.004 0.000 0.058 
 (-0.641) (-1.323) (2.589) (-0.791) (0.713) (0.817) 0.620 (-1.319) (-2.448) (-0.588) [0.103] 
9 -0.006 -0.001 0.325 -0.001 0.001 0.000 (0.000) -0.001 -0.001 -0.001 0.058 
 (-2.860) (-1.857) (3.546) (-1.753) (1.863) (0.599) 1.870 (-0.589) (-0.591) (-1.778) [0.094] 

10 0.000 0.000 0.175 -0.001 0.001 0.000 (0.000) -0.001 -0.007 0.005 0.058 
 (0.687) (-0.966) (2.001) (-1.772) (1.970) (0.696) 0.789 (-1.016) (-4.810) (0.757) [0.095] 

11 0.000 0.000 0.144 -0.001 0.001 0.000 (0.000) -0.001 -0.007 -0.039 0.054 
 (0.887) (-1.585) (1.826) (-2.113) (2.095) (1.118) -0.674 (-0.875) (-5.494) (-0.857) [0.085] 

12 0.000 -0.001 0.089 -0.001 0.001 0.000 (0.000) -0.002 -0.006 0.000 0.054 
 (0.592) (-1.816) (1.209) (-1.726) (2.213) (1.729) 0.712 (-1.245) (-4.509) (-0.732) [0.095] 

 
Panel B: models without autoregressive term  

 
13 -0.006 0.000  0.000       0.051 
 (-3.217) (-0.736)  (-0.923)       [0.177] 

14 -0.016 -0.001  -0.002 0.003      0.049 
 (-6.791) (-1.852)  (-4.590) (4.884)      [0.122] 

15 -0.006 0.000  -0.001 0.001 0.000 0.000    0.056 
 (-2.971) (-0.789)  (-3.732) (2.262) (2.799) (0.852)    [0.126] 

16 -0.008 0.000  0.000 0.001 0.000 0.000 -0.005   0.049 
 (-5.181) (-0.711)  (-0.902) (3.278) (2.058) (1.510) (-3.859)   [0.104] 

17 -0.010 -0.001  0.000 0.001 0.000  -0.008   0.047 
 (-6.787) (-1.632)  (1.111) (4.681) (3.093)  (-6.573)   [0.090] 

18 0.000 -0.001  -0.001 0.001 0.000 0.000 0.000 -0.007 0.056 0.056 
 (0.684) (-1.899)  (-4.246) (3.475) (0.690) (1.706) (0.787) (-5.974) (0.097) [0.097] 

19 0.000 -0.001  -0.001 0.001 0.000  -0.002 -0.006  0.058 
 (-0.796) (-1.868)  (-2.011) (2.361) (2.799)  (-1.358) (-4.236)  [0.096] 

20 0.000 -0.001  -0.001 0.001 0.000 0.000 -0.002 -0.007 0.000 0.056 
 (0.798) (-2.650)  (-2.078) (2.706) (0.606) (1.345) (-1.104) (-5.130) (-0.793) [0.089] 

21 0.000 -0.001  -0.001 0.001 0.000 0.000 -0.002 -0.007 0.000 0.054 
 (0.849) (-2.658)  (-1.715) (2.430) (0.809) (0.866) (-1.246) (-5.481) (0.756) [0.090] 

22 0.000 -0.001  -0.001 0.001 0.000 0.000 -0.002 -0.007 0.001 0.056 
 (0.721) (-2.214)  (-2.096) (2.648) (1.346) (0.679) (-1.019) (-4.913) (0.641) [0.091] 

23 0.000 -0.001  0.000 0.001 0.000 0.000 -0.003 -0.006 -0.003 0.054 
 (0.941) (-2.072)  (-1.086) (1.664) (1.209) (0.898) (-1.941) (-4.214) (-0.747) [0.091] 

24 0.000 -0.001  -0.001 0.001 0.000 0.000 0.000 -0.008 0.000 0.054 
 (0.475) (-2.976)   (-3.368) (2.997) (0.668) (1.639) (-0.498) (-5.902) (-0.608) [0.089] 

Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 to 2012M07. Significant 
coefficients (at 5%) appear in bold face. The column RS corresponds respectively to the variables SL, KC, PBKS, 
RBKS2 and VIX . Computations by the authors.  
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TABLE 3  

PREDICTIVE REGRESSIONS OF THE INDUSTRIAL PRODUCTION GROWTH 

(VAR50%) 
# Const. CPIt ∆IPt LIBORt GB10t HPt PSPt TEDt DEFt  SRt Hit Freq. 
  (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) [Hit Size] 

  
 Panel A: models with autoregressive term  

  
1 0.002 -0.001 0.298 0.000       0.500 
 (4.408) (-4.654) (6.773) (-1.978)       [1.092] 
2 -0.001 -0.001 0.261 -0.001 0.001      0.498 
 (-0.887) (-5.045) (6.805) (-5.328) (4.985)      [1.055] 
3 -0.001 -0.001 0.219 -0.001 0.002 0.000 0.000    0.500 
 (-1.907) (-5.56) (4.919) (-8.012) (7.725) (2.401) (2.628)    [1.008] 
4 -0.001 -0.001 0.211 -0.001 0.001 0.000 0.000 -0.001   0.502 
 (-1.428) (-4.721) (4.706) (-4.499) (6.977) (1.943) (1.794) (-1.756)   [1.021] 
5 -0.001 -0.001 0.245 -0.001 0.001 0.000  -0.001   0.500 
 (-1.128) (-4.708) (5.96) (-3.686) (6.127) (2.457)  (-1.701)   [1.034] 
6 0.000 -0.001 0.209 -0.001 0.002 0.000 0.000 -0.001 -0.001  0.500 
 (-0.674) (-4.4) (4.536) (-5.485) (7.835) (1.37) (1.497) (-0.968) (-2.308)  [0.996] 
7 0.000 -0.001 0.184 -0.001 0.001 0.000  -0.001 -0.002  0.496 
 (0.943) (-3.698) (4.01) (-4.341) (5.878) (1.664)  (-0.924) (-2.573)  [1.015] 
8 -0.001 -0.001 0.172 -0.001 0.002 0.000 0.000 -0.001 -0.001 0.000 0.498 
 (-0.922) (-4.532) (3.887) (-4.407) (7.052) (1.013) (1.378) (-1.074) (-1.257) (-0.916) [0.994] 
9 0.000 -0.001 0.164 -0.001 0.002 0.000 0.000 0.000 -0.001 -0.001 0.500 
 (-1.003) (-4.922) (3.704) (-5.342) (6.528) (0.967) (1.319) (0.758) (-1.793) (-1.36) [0.998] 

10 0.000 -0.001 0.185 -0.001 0.002 0.000 0.000 -0.001 -0.002 -0.002 0.502 
 (-1.106) (-5.098) (4.39) (-5.022) (7.448) (1.45) (1.469) (-1.046) (-2.336) (-0.828) [0.971] 

11 0.000 -0.001 0.169 -0.001 0.002 0.000 0.000 -0.001 -0.002 -0.023 0.498 
 (0.953) (-4.875) (3.687) (-5.437) (7.748) (1.03) (1.69) (-0.845) (-2.698) (-0.904) [0.97] 

12 0.000 -0.001 0.205 -0.001 0.002 0.000 0.000 0.000 -0.002 0.000 0.496 
 (0.747) (-4.505) (4.601) (-5.422) (7.055) (1.369) (1.552) (-0.641) (-2.377) (-0.664) [0.979] 

 
Panel B: models without autoregressive term  

 
13 0.003 -0.001  0.000       0.496 
 (5.819) (-3.184)  (-1.946)       [1.15] 

14 -0.001 -0.001  -0.001 0.001      0.498 
 (-1.04) (-5.314)  (-7.152) (7.016)      [1.07] 

15 -0.002 -0.001  -0.002 0.002 0.000 0.000    0.493 
 (-3.347) (-6.938)  (-11.15) (11.24) (2.949) (3.684)    [0.994] 

16 -0.002 -0.001  -0.001 0.002 0.000 0.000 -0.002   0.502 
 (-2.396) (-5.62)  (-6.05) (10.32) (2.525) (2.775) (-2.651)   [1.017] 

17 -0.001 -0.001  -0.001 0.002 0.000  -0.002   0.500 
 (-1.849) (-5.616)  (-4.675) (8.284) (2.517)  (-2.69)   [1.025] 

18 0.000 -0.001  -0.001 0.002 0.000 0.000 -0.001 -0.002 0.502 0.502 
 (1.695) (-4.865)  (-6.383) (10.26) (1.834) (1.741) (-1.983) (-3.653) (0.967) [0.967] 

19 0.001 -0.001  -0.001 0.002 0.000  -0.001 -0.003  0.498 
 (1.478) (-3.806)  (-4.095) (7.09) (1.263)  (-1.586) (-4.114)  [1.014] 

20 0.000 -0.001  -0.001 0.002 0.000 0.000 -0.001 -0.003 0.000 0.496 
 (1.446) (-4.385)  (-5.979) (9.68) (1.307) (1.53) (-1.366) (-3.71) (-1.311) [0.974] 

21 -0.001 -0.001  -0.001 0.002 0.000 0.000 0.000 -0.002 -0.001 0.498 
 (-1.038) (-4.378)  (-7.119) (8.728) (1.056) (1.752) (0.978) (-2.067) (-1.999) [0.988] 

22 0.000 -0.001  -0.001 0.002 0.000 0.000 -0.001 -0.002 0.003 0.498 
 (1.177) (-4.455)  (-5.878) (9.195) (1.723) (1.994) (-1.713) (-3.418) (1.054) [0.978] 

23 0.000 -0.001  -0.002 0.002 0.000 0.000 0.000 -0.003 0.002 0.500 
 (0.872) (-4.957)  (-10.58) (11.12) (2.147) (2.095) (0.822) (-5.004) (0.844) [0.945] 

24 0.000 -0.001  -0.001 0.002 0.000 0.000 -0.001 -0.002 0.000 0.507 
 (1.188) (-4.695)  (-5.18) (8.75) (1.785) (1.702) (-1.555) (-3.127) (-1.274) [0.983] 

Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 to 2012M07. Significant 
coefficients (at 5%) appear in bold face. The column RS corresponds respectively to the variables SL, KC, PBKS, 
RBKS2 and VIX . Computations by the authors.  
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TABLE 4  

PREDICTIVE REGRESSIONS OF THE INDUSTRIAL PRODUCTION GROWTH 

(VAR05%)  
# Const. CPIt ∆IPt LIBORt GB10t HPt PSPt TEDt DEFt  SRt Hit Freq. 
  (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) [Hit Size] 

  
 Panel A: models with autoregressive term  

 
1 0.011 0.000 -0.020 0.000       0.049 
 (8.101) (-0.153) (-0.219) (1.254)       [0.066] 
2 0.000 0.000 -0.042 -0.003 0.004      0.060 
 (0.436) (0.431) (-0.538) (-6.535) (8.514)      [0.079] 
3 0.004 0.000 -0.072 -0.003 0.004 0.000 0.000    0.036 
 (1.977) (-0.74) (-1.213) (-5.972) (6.668) (1.815) (1.849)    [0.035] 
4 0.001 0.000 -0.224 -0.003 0.004 0.000 0.000 0.000   0.056 
 (0.521) (-1.605) (-2.748) (-8.437) (11.20) (3.226) (0.514) (-0.441)   [0.064] 
5 0.004 0.000 -0.116 -0.002 0.002 0.000  0.002   0.054 
 (2.205) (-0.941) (-1.537) (-4.116) (5.878) (0.818)  (1.132)   [0.067] 
6 0.000 0.000 -0.181 -0.002 0.003 0.000 0.000 -0.002 0.002  0.069 
 (-0.537) (-0.961) (-2.236) (-3.71) (8.437) (0.631) (0.59) (-1.317) (1.49)  [0.072] 
7 0.000 0.000 -0.055 -0.001 0.002 0.000  -0.001 0.005  0.058 
 (0.729) (-1.56) (-0.961) (-3.61) (6.227) (2.328)  (-1.039) (3.951)  [0.079] 
8 0.001 -0.001 -0.129 -0.002 0.003 0.000 0.000 -0.002 0.004 -0.001 0.054 
 (1.043) (-2.36) (-1.677) (-4.193) (7.215) (1.017) (2.53) (-1.199) (2.664) (-1.03) [0.061] 
9 0.002 0.000 -0.083 -0.002 0.004 0.000 0.000 -0.001 -0.001 -0.001 0.058 
 (1.054) (-0.968) (-0.933) (-4.453) (7.549) (0.909) (2.688) (-0.769) (-0.74) (-1.55) [0.073] 

10 0.000 0.000 -0.108 -0.002 0.003 0.000 0.000 0.000 0.003 0.009 0.054 
 (-0.968) (-1.545) (-1.593) (-7.417) (8.077) (2.128) (1.532) (1.332) (2.823) (1.516) [0.077] 

11 0.000 -0.001 -0.095 -0.002 0.003 0.000 0.000 0.001 0.004 -0.024 0.056 
 (0.663) (-1.935) (-1.303) (-6.469) (8.141) (2.298) (1.228) (0.975) (3.021) (-0.863) [0.079] 

12 0.000 0.000 -0.172 -0.002 0.004 0.000 0.000 -0.002 0.001 0.000 0.058 
 (0.716) (-0.941) (-1.884) (-4.267) (9.537) (1.131) (0.826) (-1.582) (0.902) (-0.623) [0.069] 

 
Panel B: models without autoregressive term  

 
13 0.012 0.000  0.000       0.049 
 (9.055) (-0.687)  (0.856)       [0.07] 

14 0.007 0.000  0.000 0.001      0.054 
 (4.262) (-0.897)  (-1.274) (2.995)      [0.054] 

15 0.000 0.000  -0.003 0.004 0.000 0.000    0.056 
 (1.544) (-1.099)  (-8.167) (11.97) (2.625) (1.728)    [0.079] 

16 0.000 0.000  -0.003 0.004 0.000 0.000 0.001   0.060 
 (1.191) (-1.799)  (-7.516) (11.73) (0.961) (1.944) (1.332)   [0.073] 

17 0.004 0.000  -0.002 0.003 0.000  0.001   0.054 
 (2.058) (0.879)  (-4.519) (5.436) (1.499)  (1.176)   [0.062] 

18 0.000 -0.001  -0.003 0.004 0.000 0.000 0.003 0.002 0.051 0.051 
 (-1.501) (-1.699)  (-8.403) (11.28) (3.179) (2.361) (2.717) (1.626) (0.071) [0.071] 

19 0.002 0.000  -0.001 0.003 0.000  -0.003 0.002  0.054 
 (1.214) (-1.653)  (-2.753) (5.763) (1.969)  (-2.486) (1.961)  [0.068] 

20 0.000 0.000  -0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.063 
 (1.379) (0.813)  (-5.818) (10.74) (-1.617) (2.659) (-1.808) (1.438) (1.685) [0.084] 

21 0.001 0.000  -0.002 0.003 0.000 0.000 -0.001 0.003 -0.002 0.049 
 (1.247) (-1.052)  (-4.124) (6.862) (1.326) (0.932) (-1.023) (2.265) (-2.296) [0.066] 

22 0.000 0.000  -0.002 0.004 0.000 0.000 0.001 0.002 0.014 0.054 
 (-0.645) (-1.135)  (-7.467) (9.382) (2.166) (1.009) (1.075) (1.516) (1.489) [0.072] 

23 0.001 0.000  -0.002 0.003 0.000 0.000 -0.002 0.003 -0.112 0.051 
 (1.043) (-1.059)  (-3.437) (6.642) (1.371) (1.575) (-1.554) (2.228) (-1.809) [0.07] 

24 0.000 0.000  -0.002 0.002 0.000 0.000 0.000 0.003 0.000 0.058 
 (-1.308) (-1.047)  (-5.037) (6.85) (1.486) (1.449) (1.582) (3.08) (-1.346) [0.081] 

Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 to 2012M07. Significant 
coefficients (at 5%) appear in bold face. The column RS corresponds respectively to the variables SL, KC, PBKS, 
RBKS2 and VIX . Computations by the authors.  
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Fig. 1. Quantile regression function( )τρ ⋅  

Source: Illustration by the authors. 
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Fig. 2. Generalized impulse response functions of the industrial production growth 
and the equity index to a Ted spread shock 
Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 
to 2012M07. The grey points represent the response at +/- 2 standard errors. 
Computations by the authors. 

 

 

 



 20

 
Fig. 3. Industrial production growth and out-of-sample density forecasting (VAR 
model) 
Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 
to 2012M07. Computations by the authors.  
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Fig. 4. Industrial production growth and its 95% estimated VaR (models with/without 
financial health variables) 
Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 
to 2012M07. Computations by the authors.  
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Fig. 5. Absolute value of the Hits of the predicted 95%VaR for the industrial 
production growth without (upper figure) and with (lower figure) the financial health 
variables 
Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 
to 2012M07. Computations by the authors.  
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Fig. 6. Predicted quantiles (from 2.5% to 50%) of the industrial production growth in 
two states of the nature and their difference 
Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 
to 2012M07. The “good state of nature” and the “bad state of nature” correspond 
respectively to the predicted VaR in March 2006 and October 2008. Computations by 
the authors.  
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Appendix 1. Complementary Results 
 
 

 
 

TABLE A.1.  

CORRELATION MATRIX 

 IP CPI LIBOR HP PSP GB10 PBKS RBKS2 TED DEF VIX  KC SL 

IP 1.00 -0.08 0.28 0.55 0.72 0.07 0.64 -0.14 0.21 -0.38 -0.16 -0.12 -0.21 

CPI -0.08 1.00 0.05 -0.07 0.15 0.13 0.04 0.05 0.04 0.24 -0.07 0.14 0.14 

LIBOR 0.28 0.05 1.00 0.26 0.22 0.92 0.22 -0.14 0.82 0.30 -0.07 0.58 0.56 

HP 0.55 -0.07 0.26 1.00 0.33 0.14 0.76 -0.37 0.04 -0.37 -0.51 -0.33 -0.36 

PSP 0.72 0.15 0.22 0.33 1.00 0.07 0.68 -0.17 0.12 -0.26 -0.18 -0.05 -0.18 

GB10 0.07 0.13 0.92 0.14 0.07 1.00 0.12 -0.17 0.69 0.34 -0.11 0.53 0.56 

PBKS 0.64 0.04 0.22 0.76 0.68 0.12 1.00 -0.42 0.05 -0.38 -0.45 -0.28 -0.34 

RBKS2 -0.14 0.05 -0.14 -0.37 -0.17 -0.17 -0.42 1.00 0.06 0.35 0.35 0.29 0.25 

TED 0.21 0.04 0.82 0.04 0.12 0.69 0.05 0.06 1.00 0.51 0.13 0.78 0.77 

DEF -0.38 0.24 0.30 -0.37 -0.26 0.34 -0.38 0.35 0.51 1.00 0.44 0.85 0.86 

VIX -0.16 -0.07 -0.07 -0.51 -0.18 -0.11 -0.45 0.35 0.13 0.44 1.00 0.46 0.42 

 KC -0.12 0.14 0.58 -0.33 -0.05 0.53 -0.28 0.29 0.78 0.85 0.46 1.00 0.97 

SL -0.21 0.14 0.56 -0.36 -0.18 0.56 -0.34 0.25 0.77 0.86 0.42 0.97 1.00 
 

Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M03 to 2012M07. IP: industrial production, CPI: consumer price index, LIBOR: Libor 3 month rate, HP: house 
price index, PSP: S&P500 index, GB10: 10 year Treasury rate, PBKS: banking sector equity index, RBKS2: volatility of the banking sector equity index return (monthly squared returns), TED: 
Ted spread, DEF: Moody’s BAA – AAA spread), VIX: implied volatility of the S&P index (VIX), KC: Financial stress index of the Kansas-City Fed, SL: Financial stress index of the Saint-Louis 
Fed. Computations by the authors.  
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Appendix 2. Data reconstruction 
 
The VIX was rebuilt before 1990 from the cross-sectional volatility of the S & P 500. 
Figure A.1 shows on the period of availability of the VIX, the VIX itself and its 
reconstruction from the cross-volatility. 
Composite indicators of financial stress of the Federal Reserve of St. Louis and 
Federal Reserve Bank of Kansas City are calculated by Principal Component Analysis 
(PCA). The weekly index Fed Saint-Louis is constructed from 18 data sets including 
data from 1994 interest rate (effective rate of the Federal Reserve rate 2 years, 10 
years, 30-year U.S. Treasury etc..) data rate spreads (yield curve Treasury yield curve 
corporate, Ted spread, etc..) and various data (VIX volatility index bond market, etc.).. 
The monthly index of the Kansas City Fed is itself constructed from 11 data sets since 
February 1990 including data rate spreads means (Ted spread, spread AAA and 10-
year Treasury, etc..) and measures based on current or anticipated behaviour of asset 
prices (VIX correlation between stock returns and yields of Treasury bonds, etc.).. 
These two indicators were reconstructed until the early 1990s from a principal 
components analysis on our other indicators of financial stress. The comparison of 
these two indicators with their reconstruction that appears in Figure A.2 shows these 
indicators are highly correlated in periods of stress even if level differences appear in 
situations "normal". 
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Fig. A.1. Implied volatility (VIX) and its completion based on the cross-volatility of 
the S&P500 equity index over the period 1990M01-2012M07 
Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 
to 2012M07. Computations by the authors.  
 
 
 

 

 
Fig. A.2. Financial stress indices (Saint-Louis fed and Kansas City Fed) and their 
completion over the period 1994M01-2012M07 
Source: Datastream, Bloomberg and FRED II database, monthly data from 1975M3 
to 2012M07. Computations by the authors.  
 

 

 


