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Abstract

Explanatory variables with simple correlation coe¢ cients with the de-
pendent variable below 0.1 in absolute value (such as aid with economic
growth) may have very large and statistically signi�cant estimated para-
meters in multiple regressions, which are unfortunately "outliers driven" or
spurious. This is obtained by including another regressor which is highly
correlated with the initial regressor, such as a lag, a square or interaction
terms of this regressor. The analysis is applied on the "Botswana outliers
driven" Burnside and Dollar [2000] article which found that aid had an ef-
fect on growth only for countries achieving "good" macroeconomic policies.
JEL classi�cation: C12, O19, P45
Keywords: Near-Multicollinearity, Student t-Statistic, Spurious regres-

sions, Ceteris paribus, Classical Suppressor, Parameter In�ation Factor,
Growth, Foreign Aid.
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Résumé: Une variable explicative ayant un coe¢ cient de corrélation sim-
ple avec la variable dépendante plus petit que 0,1 en valeur absolue (telle que
l�aide au développement et la croissance) peut avoir des paramètres estimés
très grands et statistiquement signi�catifs dans des régressions multiples,
alors qu�il n�y a pas d�e¤et ou que cet e¤et provient seulement de quelques
observations atypiques. Ce résultat peut être obtenu en ajoutant une autre
variable explicative très corrélée avec la précédente telle que cette vari-
able retardée ou mise au carré ou multipliée par une autre variable (terme
d�interaction). Nous appliquons l�analyse ci-dessus à l�article de Burnside et
Dollar (2000) qui a montré que l�aide aurait un e¤et sur la croissance seule-
ment pour les pays ayant de "bonnes" politiques macroéconomiques, alors
que ces résultats dépendent en grande partie des observations atypiques du
Botswana.
Mots clés: Quasi-colinéarité, Test de Student, Régressions fallacieuse,

Ceteris paribus, Facteur d�in�ation du paramètre, "Suppresseur classique",
Croissance, Aide au développement.

1. Introduction

Should applied researchers include in multiple regressions explanatory variables
which have a simple correlation close to zero with the dependent variable? Since
Horst [1941], a regressor which is not correlated with the dependent variable is
called a �classical suppressor variable" (Cohen et al. [2003], Friedman and Wall
[2005], Christensen [2006])). For Yule [1897], a classical suppressor variable is
not considered to be a problem in a multiple regression. Since Fisher [1925]
introduced hypothesis testing in multiple regressions assuming the normality of
the disturbances, the decision rule is that, if a �classical suppressor" variable
is statistically signi�cant, it should be included in the multiple regression. By
contrast, this paper presents a number of results for being particularly cautious
when including a statistically signi�cant classical suppressor variable in multiple
regressions.
Firstly, a classical suppressor variable, which is usually not statistically sig-

ni�cant in a simple regression, may become statistically signi�cant in a multiple
regression, if the multiple regression includes another �classical suppressor" which
is highly correlated with the �rst one. This fact remained unnoticed,as the litera-
ture tends to over-emphasize that highly correlated variables lead to a �low power
of the t-test�(Silvey [1969], Belsley [1991], Mason and Perreault [1991], Hill and
Adkins [2001]. Spanos and McGuirk [2002] is an exception with this respect.
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The second point is that applied researchers can easily include another highly
correlated suppressor variable, such as a lag, a square or an interaction term of
the �rst classical suppressor. Those speci�cations are usually interesting dynamic
or non-linear models which are frequently published.
Unfortunately, and this is the third point, a regression model including two

highly correlated classical suppressor variables presents two interpretations which
cannot be decided upon by the regression model only (Hoover [2001]). The �rst
interpretation is that the regression is related to a homeostatic model with negative
feedback between the two classical suppressors. In this case, the e¤ect of a classical
suppressor on the dependent variable is completely o¤set by a highly correlated
negative feedback response of the other classical suppressor, so that the dependent
variable remains invariant. The second interpretation is that at least one of the
two classical suppressor variable has no e¤ect at all on the dependent variable,
which is shown after orthogonalization of the explanatory variables. In the second
case, there is a spurious regression e¤ect of the �rst classical suppressor variable
in the regression, independently from its statistical signi�cance.
The fourth point is that, even if the true model is the homeostatic model,

and even if the estimated parameters are highly statistically signi�cant (there is a
high power of the t-test in the sample), the highly correlated classical suppressor
regressors have large estimated parameters which are highly sensitive to a few
observations with high leverage, that are observations which are far form the
mean of those regressors. A �rst consequence is that these large parameters will
be unstable and are likely to change signs including or excluding a few of these
observations. A second consequence is related to the interpretation of the model.
The applied researcher may claim that a large e¤ect of the classical suppressor
variable on the dependent is valid on the full population, whereas it is only driven
by a few outliers.
The �fth point is related to the publication biases in top journals (Stanley

[2005], Ioannidis [2008]). First, journals select papers which presents statisti-
cally signi�cant e¤ects. Second, top journals may favor unexpected, novel and
controversial correlations. A spurious regression is likely to present unexpected
correlations. Third, the instability of large parameters depending on a few obser-
vations may foster controversies, citations and the journal impact factor. Fourth,
a pair of classical suppressors may appear in interesting speci�cations such as dy-
namic and non-linear models with interaction terms. For all these reasons, the
publications of regressions including a pair of classical suppressors are likely to be
widespread.

3

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.78

ha
ls

hs
-0

08
02

57
9,

 v
er

si
on

 1
 - 

20
 M

ar
 2

01
3



The sixth point provides an example of the above �winners�curse" phenom-
enon (Ioannidis [2008]) in the �eld of aid, policies and growth, namely the paper
by Burnside and Dollar [2000] (more than 3000 citations in Google Scholar data-
base in 2012). Foreign aid is a classical suppressor variable for economic growth.
Two interaction terms where included in the paper to reach statistical signi�-
cance for a pair of classical suppressors. Dozens of papers followed their insight
and controversies �ourished. Over the last 15 years, the process was likely to di-
vert researchers scarce resources from other lines of research and from more robust
speci�cations.
The paper proceeds as follows. Section 2 investigates how spurious regres-

sions may occur with classical suppressor variables. Section 3 presents graphical
views of the critical regions of the t-test including or not an additional regressor
and depending on the correlation among regressors. Section 4 proposes tools for
practitioners to avoid these spurious regressions. Section 5 applies these tools to
Burnside and Dollar�s paper. Section 6 concludes.

2. Spurious regression with classical suppressor variable

We consider the following trivariate regression on standardized variables. There
is no constant in the model and all variables have mean zero and a variance of
one. Bold letters correspond to matrices and vectors:

x1 = �12x2 + �13x3 + "1:23 (1)

where x1 is the vector of N observations of the dependent variable, X2;3 = (x2;x3)
is the matrix where column i corresponds to the N observations of the regressor
xi for 2 � i � 3, � =(�12; �13) is a vector of standardized parameters to be
estimated, and "1;23 is a vector of random disturbances that follow a normal
distribution with mean zero and variance �2. In a linear regression model with
standard assumptions on the error term, (E("tjX2;3;t) = 0 andE("2t jX2;3;t) = �

2),
Spanos and McGuirk [2002] derive in their theorem 1 a relation between the model
parameters (�;�2) and the primary parameters of the model de�ned by a vector
of means and a covariance matrix. In their theorem 2, Spanos and McGuirk [2002]
state that the parameterization (�;�) exists if and only if the determinant of the
covariance matrix is positive.
The ordinary least squares estimated parameters were computed by Yule [1897]

(variables with a hat denote estimated variables, except for sample simple corre-
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lation coe¢ cients to simplify notation): b�12b�13
!
=

1

1� r223

�
1 �r23
�r23 1

��
r12
r13

�
=

1

1� r223

�
r12 � r13r23
r13 � r12r23

�
(2)

Let us assume that the null hypothesis for the true simple correlation
coe¢ cient H0 : r12 = 0 is not rejected A zero correlation coe¢ cient r12 = 0
implies the following relation between the parameters of the multiple regression:b�12 + r23 � b�13 = r12 = 0. Let us orthogonalize the two suppressor variables using
the residuals of the intermediary regression of the regressor x3 as a function of
the regressor x2 ("3:2 = x3 � r23x2):

x1 = b�12x2 + b�13x3 + b"1:23 = 0:x2 + b�13 (x3 � r23x2) + b"1:23: (3)

In the second equality, the variable x2 has no direct e¤ect on the dependent
variable (because r12 = 0) and no indirect e¤ect, because the variance of the
residuals x3 � r23x2 corresponds to the variance of x3 which is not related at all
to the variations of x2. Hence, the orthogonalized regressors multiple regression
shows that there is no e¤ect of the variable x2 on the dependent variable x1
Let us now assume the particular case of a high correlation r23 between the two

regressors. The higher the correlation among regressors, the lower the variance
of the residual, which is much smaller than the variance of each standardized
regressors when those ones are highly correlated: V ar (x3 � r23x2) = 1 � r223 <
V ar (x3). After orthogonalization, the problem of near-collinearity turns out to
be the problem of the relatively small variance of the unique regressor x3 � r23x2
with respect to the dependent variable. An explanatory variable which has most
of its observations very close to its mean leads to a simple regression which is
highly sensible to the omission or the inclusion of a few observations which are
the farthest from the mean of the variable in the sample (observations with high
leverage).
A second drawback of a second regressor highly correlated with a classical

suppressor is that it also turns to be a classical suppressor where the null hy-
pothesis H0 : r13 = 0 is not rejected. This intuitive property is derived later on
from the determinant of the correlation matrix which has to be positive. Hence,
the orthogonalization can be done the other way round with the residual of the
following regression ("2:3 = x2 � r23x3), and both regressors may turn to have
potentially spurious e¤ects.
By contrast, the �rst equality leads to a potentially large �ceteris paribus"

e¤ect of x2 with b�12 = �r23 � b�13, with a non linear increasing e¤ect of the
5
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correlation coe¢ cient between regressors r23. There is a potentially large e¤ectb�13 of x3 on the dependent variable x1 with the opposite sign with respect tob�12 when r23 > 0. In this equation, the homeostatic model with a negative
feedback of the variable x2 on x3 (or the reverse) is a possible interpretation. The
�ceteris paribus" interpretation of the large estimated parameters b�12 and b�13 is
meaningless, as a change of x2 leads to an immediate change of x3.
Hoover [2001] states that these two models (the spurious one versus the home-

ostatic one with a negative feedback among regressors) are ontologically di¤erent,
and that the parameter estimation does not allow to decide which model is the
correct one. However, if the t-test states that statistical signi�cance is not ob-
tained for b�12 and b�13 for highly correlated classical suppressors, then the issue
of the interpretation of the estimated parameters does not matter in practice. By
contrast, if the t-test states that statistical signi�cance is easily obtained for b�12
and b�13 for highly correlated classical suppressors, then the applied researcher has
no formal clue on how to decide between the two interpretation of the estimated
parameters For this purpose, the next section investigates how the critical region
of the t-test evolves when the correlation between regressors increases.

3. The Changes of the Critical Region of the t-Test when
the Correlation among Regressors Increases

3.1. The shapes of the critical region

LetR3 be a sample correlation matrix whose entries are the correlation coe¢ cients
of all pairs of variables, including the dependent variable on the �rst row and
column. The submatrixR2 corresponds to the correlation matrix of the regressors.
One has r2ij � 1 for 1 � i � 3 and 1 � j � 3. The Schur property of the
determinants of the correlation matrices (valid for k variables, here k = 3) is
related to the coe¢ cient of determination R21:23:

0 � det (R3) =
�
1�R21:23

�
det (R2) � det (R2) = 1� r223 � 1

R21:23 = 1� det (R3)

det (R2)
=
r212 + r

2
13 � 2r12r13r23
1� r223

= 1�
�
1� r212

� �
1� r213:2

�
Assuming the normality of the disturbances, Fisher [1925] computed the es-

timated standard deviations of estimated parameters b�d�12 and their Student�s
t-statistics td�12:

6

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.78

ha
ls

hs
-0

08
02

57
9,

 v
er

si
on

 1
 - 

20
 M

ar
 2

01
3



 b�d�12b�d�13
!
=

p
det (R3)p
N � 2

1

1� r223

�
1
1

�
and

 
td�12
td�13

!
=

p
N � 2p
det (R3)

�
r12 � r13r23
r13 � r12r23

�

Feasible correlation coe¢ cients and exact regression boundary. The
condition on correlation coe¢ cients det (R3) � 0 is:

det (R3) = � (1 + r23)
�
r12 � r13p

2

�2
� (1� r23)

�
r12 + r13p

2

�2
+ 1� r223 � 0: (4)

In the case where det (R3) = 0, the Schur property implies that the coe¢ cient
of determination R21:23 is equal to one. Hence, all residuals are equal to zero. The
regression is an exact linear relation between the three variables. The estimated
standard errors of the estimated parameters are equal to zero. The t-statistics
tends to in�nity.
For a given 0 < r23 < 1 and varying r13 and r12, det (R3) = 0 describes an

ellipse centered at the origin (r12 = r13 = 0). When r23 > 0, the major axis has
a length of 2

p
1 + r23 and is on the line r12 = r13, i.e. it has a slope of one. The

minor axis has a length of 2
p
1� r23 and is on the line r12 = �r13. When r23 < 0,

the major axis is r12 = �r13 and the minor axis is r12 = r13.
The large blue ellipses in �gures 1 to 4 are all combinations of r12 and r13 for

which det (R3) = 0: The values of r23 are chosen to be equal to 0, 0:5, 0:95 and
0:99, in �gures 1 to 4 respectively. All possible values of correlation coe¢ cients of
r12 and r13 have to be inside the ellipse or on its border. When r23 = 0, the ellipse
is a circle centered at the origin (r12 = r13 = 0) with a radius of 1 (�gure 1). As
seen on �gures 1 to 4, when the correlation coe¢ cient r23 increases from zero to
one, the width of the minor axis decreases. Hence, for r23 = 1 (exact positive
collinearity), the ellipse degenerates into the segment of the line r12 = r13, de�ned
on [�1;+1]. When r23 = �1 (exact negative collinearity), the ellipse degenerates
into the segment of the line r12 = �r13, de�ned on [�1;+1]. These two limit cases
correspond to the singularity of the correlation matrix of the regressors (exact
collinearity of the explanatory variables: det (R2) = 0), the ordinary least squares
estimators cannot be computed.
Critical region for the test of the null hypothesis H0 : r12 = 0 against

H1 : r12 6= 0. The sample distribution of the correlation coe¢ cient has been found
by Fisher [1921]. The complement of the critical region of the test with the null

7
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hypothesis H0 : r12 = 0 can be stated as:

�1 � � tr12 (�)q
N � 1 + tr12 (�)

2
� r12 �

tr12 (�)q
N � 1 + tr12 (�)

2
� 1:

The border of the critical region is depicted as two horizontal lines over and above
the horizontal line where H0 : r12 = 0 (see �gures 1 to 4). A sample correlation
coe¢ cient which is between these two lines leads to accept the null hypothesis
H0 : r12 = 0 for a given probability of type I error. The area of the critical region
for rejecting the null hypothesis (H0 : r12 = 0) increases when the above interval
for r12 is reduced, when the number of observations N and/or the threshold �
increase. The complement of the critical region of the test with the null hypothesis
H0 : r13 = 0 against the alternative H1 : r13 6= 0 is given by similar inequalities.
The border of the critical region is depicted as two vertical lines on both sides of
the vertical line where H0 : r13 = 0.
Critical region for the test of the null hypothesis H0 : �12 = 0 against

the alternative hypothesis H1 : �12 6= 0: The null hypothesis H0: �12 = 0 is
equivalent to r12 = r23r13. This condition de�nes a line through the origin with a
slope of r23 in the plane (r12; r13). It reaches the limits r13 = �1 for r12 = �r23 and
r23 = 1 for r12 = r23. It is depicted in �gures 1 to 4 as a green line. When the two
regressors are orthogonal (r23 = 0), the segment describing the null hypothesis
H0: �12 = 0 is the horizontal line. When r23 > 0:95 (high correlation among
regressors), the segment describing the null hypothesis H0: �12 = 0 is close to the
major axis of the blue ellipse, the slope of which is equal to one.
The critical region of the test of the null hypothesis H0 : �12 = 0 against

H1 : �12 6= 0 amounts to de�ne a critical region for the test of the partial cor-
relation coe¢ cient r12:3 with a given type I error, e.g. � = 5%, related to the
percentile td�12 (�) (the sample distribution of the partial correlation coe¢ cients
has been found by Fisher [1924]). The t-statistics is related to the partial correla-
tion coe¢ cient as follows:

�1 < r12:3 =
r12 � r13r23p

(1� r213) (1� r223)
=

td�12q
td�12 +N � 2

=

p
1� r223p
1� r213

b�12 < 1
The complement of the critical region to reject the null hypothesis is de�ned

8
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by:

�1 � �
td�12 (�)q

N � 2 + t2d�12 (�)2
q
1� r213

q
1� r223 � r12 � r13r23 �

�
tc�1 (�)q

N � 2 + t2d�12 (�)2
q
1� r213

q
1� r223 � 1:

The border of the critical region is depicted as the small red ellipse in �gures 1 to 4
with the major axis de�ned by H0 : �12 = 0, the green line. The critical region of
the t test of the null hypothesis H0 : �12 = 0 lies outside this red ellipse, but inside
the larger blue ellipse of feasible correlation coe¢ cients (such that det (R3) = 0).
There, we have all combinations of r12 and r13 for a given r23 for which the null
hypothesis H0 : �12 = 0 is rejected and that are feasible in the sense that the
determinant of the correlation matrix is positive or equal to zero. The area of the
critical region to reject the null hypothesis H0 : �12 = 0 increases when the above
interval for r12 is reduced, that is when: N increases and/or r223 ! 1 (there is high
correlation among regressors) and/or r213 ! 1 (the other explanatory variable
is strongly correlated with the dependent variable) and/or t (�) decreases (the
applied researcher sets for example a threshold for the probability of type I error
of � = 10% instead of 5%).

3.2. Testing the violations of the hypothesis of the stability of condi-
tional independence

Let us de�ne a �type I inference discordance�based on the following two condi-
tions. Firstly, the t-test rejects the null hypothesis of no e¤ect (H0 : r12 = 0)
between the dependent variable x1 and a regressor x2, in the bivariate regression.
Secondly, the t-test does not reject the null hypothesis of no e¤ect (H00 : �12 = 0)
between the dependent variable x1 and a regressor x2, in the trivariate regression.
This leads to the following formal condition:
Proposition 1: When r12 > 0 and when r13r23 > 0, a type I inference

discordance in the trivariate regression occurs for:

 (�;N; 1) � r12 � r13r23 +  (�;N; 2)
q
1� r213

q
1� r223

where  (�;N; k) =
tr12 (�)q

N � k + tr12 (�)
2

9
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The usual concern of econometric textbooks with near-multicollinearity is re-
lated to type I inference discordance which may occur when r23 is relatively large.
Let us now de�ne a type II discordance where a "classical suppressor" turns

to be statistically signi�cant when including an additional regressor. Firstly, the
t-test does not reject the null hypothesis of no e¤ect (H0 : r12 = 0) between the
dependent variable x1 and a regressor x2 in the simple regression Secondly, the
t-test rejects the null hypothesis of no e¤ect (H0 : �12 = 0) in the trivariate
regression:
Proposition 2: When r12 > 0 and when r13r23 > 0, a type II inference

discordance in the trivariate regression occurs for:

r13r23 +  (�;N; 2)
q
1� r213

q
1� r223 � r12 �  (�;N; 1)

where  (�;N; k) =
tr12 (�)q

N � k + tr12 (�)
2

The left hand side of the above inequality has to be su¢ ciently small. As a
consequence, when the second regressor is highly correlated with the dependent
variables (r13 close to one in absolute value), type II inference discordance are
likely to occur when the regressors are close to be orthogonal (r23 close to zero).
Conversely, when the regressors are highly correlated (r23 close to one in absolute
value), type II inference discordance is likely to occur when the second regressor
is a classical suppressor (r13 close to zero).
We now discuss the occurrence of type I versus type II discordances when

the correlation between regressors r23 increases (�gures 1 to 4, for N = 102).
These �gures show the critical regions of both t-tests in bivariate and trivariate
regressions, in the plane (r13; r12), with the the correlation coe¢ cient r12 on the
vertical axis as a function of the correlation coe¢ cient r13 on the horizontal axis.
On �gure 1 to 4, type I discordance occurs for (cr13;cr12) above the highest red
horizontal line (or below the lowest red horizontal line) and inside the red ellipse.
Type II discordance occurs for (cr13;cr12) between the highest red horizontal line
and the lowest red horizontal line, inside the blue ellipse, and outside the red
ellipse.
In �gure 1, with orthogonal regressors (cr23 = 0), the estimated parameters are

identical b�12 = cr12. Orthogonal regressors are found in incomplete principal com-
ponent regressions or with Gram-Schmidt orthogonalized regressors. The critical
region for the test of the null hypothesis H0 : �12 = 0 is included in the critical

10
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region for the test of the null hypothesis H0 : r12 = 0. There is no type I discor-
dance between the two tests. Type II discordance occurs when the correlation of
the other regressor with the dependent variable get closer to one (cr13 ! 1). The
R2 increases, the root mean square error decreases, so that the standard error ofb�12 decreases, although the variable x2, orthogonal to x3, is totally unrelated
to the reduction of the root mean square error. A limit case of type II
discordance is when the second regressor is perfectly correlated with the depen-
dent variable: cr13 = 1. Because the residuals are all equal to zero, R21:23 = 1.
The root mean square error component of the estimated standard error of b�12 is
zero. The t-statistic tends to in�nity. The di¤erence R21:23 � r212 is equal to one
in the limit case cr12 = 0. The larger is R21:23 � r212 , the larger is the power of the
t-test of the null hypothesis �12 = 0 in a multiple regression (Cohen [1988]). For
the sample parameters cr12 = b�12 close to zero but not exactly equal to zero, the
t-test will reject the null hypothesis H0 : �12 = 0 with an extremely high power
of the t-test when R21:23 = 1. Another example is to include a large number of
orthogonal regressors (up to all the principal components in principal component
regressions) that increase mechanically the coe¢ cient of determination so that the
root mean square error shrinks. As a consequence, the estimated standard error
of the classical suppressor shrinks as well. Then, its estimated parameter turns
to be statistically signi�cant although its contribution to the explained variance
in the R21:23 is close to zero.
To conclude on the particular case of orthogonal regressors, we suggest that

only the simple correlation critical region makes sense for doing inference (Chate-
lain and Ralf [2010] present a similar argument for time invariant variables in
panel data). This suggestion rules out type II discordance, and amounts to ex-
clude classical suppressors in regressions with orthogonal regressors. Software
programmers (e.g. PROC REG, PCOMIT instruction in SAS) should change the
computation of standard errors with incomplete principal component ordinary
least square regressions.
In �gure 2, the sample correlation between the two variable is equal to cr23 = 0:5

The green line with a positive slope equal to cr23 = 0:5 is the location of the null
hypothesis �12 = 0. There is now an area for type I discordances The area of
type II discordances increases with respect to the case of orthogonal regressors.
There is little overlap of area of the type II discordance for the other parameter
(reject H0 : �13 = 0 and do not reject H0 : r13 = 0) which is not represented
on �gure 2 for the sake of clarity. For the classical suppressor to reach statistical
signi�cance in the trivariate regression, the second regressor has to be neither
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highly nor weakly correlated with the dependent variable: �gure 2 suggests these
�gures: 0:1 < cr13 < 0:9. In the orthogonal regression (equation 3), its residuals
("2:3 = x2�r23x3) still have a relatively large variance (0:75), so that its coe¢ cient
may be relatively precise.
In �gure 3, the sample correlation between the two variables is equal to cr23 =

0:95. The green line has a slope equal to 0:95: For type I discordances, even very
large values of cr12 close to one, with a power of the t-test of the simple correlation
e¤ect H0 : r12 = 0 close to one are compatible with the complement of the critical
region of the t-test of coe¢ cient of multiple correlation H0 : �12 = 0, with a low
power of this t-test. This is the usual concern of textbooks. This time, the area
of type II discordance of the �rst regressor overlaps much more with the area of
the type II discordance for the other regressor (near-multi-collinear pairs) than in
the case of �gure 2. This means that both regressors are statistically signi�cant
and highly correlated classical suppressors. In this case, they may be related to
spurious inference or to an unstable estimation with outliers driven inference, even
if the power of the t-test H0 : �12 = 0 is close to one, for example, in the cases
close to the blue ellipse.
Let us provide numerical insights on minimal values of r13 for reaching the

critical region of statistical signi�cance (p = 0:05) when r23 = 0:95 and r12 = 0

depending on the number of observations. For b�12 to be statistically signi�cant
(p = 0:05), it is su¢ cient that jr13j > 0:031 for N = 402 with b�12 = 0:3 > r12 = 0,
jr13j > 0:061 for N = 102 (�gure 3) with b�12 = 0:59 > r12 = 0), jr13j > 0:127 for
N = 22 with b�12 = 1:23 > r12 = 0, knowing that jr13j cannot exceed 0:312 and b�12
cannot exceed 3:04 (blue ellipse border). In order to reach statistical signi�cance
of b�12 for a p-value at least equal to 5%, a di¤erence of a few percentage points
between the correlation coe¢ cient r12 and r13 is su¢ cient, so that jr12 � r23r13j is
not too small.
In �gure 4, the sample correlation between the two variable is equal to cr23 =

0:99. The �gure is qualitatively equivalent to �gure 3. But this time, the overlap
of the type II discordance for the pair of regressors is nearly complete.
Monte Carlo simulations knowing true correlation coe¢ cients. An

important issue is the sample distribution of (r12, r13) on the areas depicted in
the �gures 1 to 4 given r23. This joint distribution is related to the sample distri-
bution of the correlations coe¢ cients (Fisher [1921]) and of the partial correlation
coe¢ cients (Fisher [1924]). Some insights of this sample distribution of type I
and type II discordances are easily obtained by Monte Carlo simulations. Sam-
ples have been drawn 1000 times from a multivariate normal distribution with the
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true correlation coe¢ cients given �rst as rT23 = 0:50; r
T
12 = 0, r

T
13 = �0:03 and a

sample size of N = 102 (case of �gure 3) and then of N = 1002. The following
tables 1 and 2 report the proportion of outcomes of tests of null hypothesis of
parameters for the simple regression and for the trivariate regression at the 5%
threshold for 1000 replications. The proportion of type II discordance (spurious)
remains very small for a correlation coe¢ cient of 0:5 between the two regressors.
We report in tables 3 and 4 the replications of the two previous simulations,

changing only the true correlation coe¢ cient between the two regressors to rT23 =
0:99 (�gure 4, for N = 102) The key result is that the proportion of spurious
regressions (equal to 52; 1%) is not negligible for the �nite sample distribution of
coe¢ cients. In table 4, With a larger sample size of 1002 observations, spurious
regressions with statistical signi�cance in the trivariate regression occur in 95:5%
of the simulations. This suggests that the usual recommendation of increasing
the sample size in order to alleviate near-multicollinearity problems may foster
spurious regressions.
Table 1: Inference discordances rT12 = 0, rT13 = �0:03, rT23 = 0:50 N =

102; 1000 replications

Do not reject r12 = 0 Reject r12 = 0
Do not reject �12 = 0 No e¤ect: 92:3% Type I: 3:3%
Reject �12 = 0; Type II (spurious): 2:1% E¤ect: 2:3%

Table 2: Inference discordances rT12 = 0, rT13 = �0:03, rT23 = 0:50 N =
1002; 1000 replications

Do not reject r12 = 0 Reject r12 = 0
Do not reject �12 = 0 No e¤ect: 90:6% Type I: 2:4%
Reject �12 = 0; Type II (spurious): 4:9% E¤ect: 2:1%

Table 3: Inference discordances rT12 = 0, rT13 = �0:03, rT23 = 0:99 N =
102; 1000 replications

Do not reject r12 = 0 Reject r12 = 0
Do not reject �12 = 0 No e¤ect: 42:3% Type I: 2:8%
Reject �12 = 0; Type II (spurious): 52:1% E¤ect: 2:8%

Table 4: Inference discordances rT12 = 0, rT13 = �0:03, rT23 = 0:99 N =
1002; 1000 replications

13
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Do not reject r12 = 0 Reject r12 = 0
Do not reject �12 = 0 No e¤ect: 0% Type I: 0%
Reject �12 = 0; Type II (spurious): 95:5% E¤ect: 4:5%

On the distribution of true correlation coe¢ cients: The frequency
of spurious regressions depends also upon the distribution on true correlation
coe¢ cients (rT12, r

T
13) on the planes depicted in the �gures 1 to 4 given r

T
23 for

any available data set of three variables in any �eld. This may depend on prior
distributions. A researcher may choose a Laplacian prior: the distribution is
uniform. For researchers such as Pearl [2009], p.62, the area of the discordances
related to spurious regressions, which violates the assumption of the stability of
conditional independence, has a prior measure equal to zero. The argument put
forward is that strict equalities among product of parameters (for example, leading
to a zero simple correlation coe¢ cient with the dependent variable: �12+r23 ��13 =
0) have zero Lebesgue measure in any probability space in which parameters can
vary independently (Spirtes et al. [2000]). Freedman [1997] by contrast, claimed
that there is no reason to assume the prior that parameters are not in fact tied
together by equality constraints of this sort.
In practice, researchers may select variables while doing exploratory regressions

and data mining, in order to reach statistical signi�cance (reject H0 : �12 = 0)
for publication (Stanley [2005]). When the simple correlation of the dependent
variable with the explanatory regressor of interest is zero, it is easy to �nd highly
correlated regressors, such as lags, powers and interaction terms of the classical
suppressor or �nding a control variable which has a common unobservable factor
with the classical suppressor. Then statistical signi�cance is likely to follow suit.

4. How to Prevent Spurious Regressions

Three indicators have been proposed in order to detect near-collinearity: the
determinant of the correlation matrix between regressors det (R2), the variance
in�ation factor (V IF ) and the condition index CI. In the trivariate case, these
indicators depend only on the correlation coe¢ cients between the two explanatory
variables, r23:

det (R2) = �max�min = 1�r223; V IF =
1

det (R2)
=

1

1� r223
, CI =

r
�max
�min

=

r
1 + r23
1� r23

where �max = 1+ r23 and �min = 1� r23 are the two eigenvalues of the correlation
matrix of the regressors R2. For example, a high correlation among regressors can
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be de�ned by a unique rule of thumb such as r23 � 0:8 so that det (R2) < 0:36 or
V IF > 2:7 or CI > 3.
A measure able to evaluate whether coe¢ cients are oversized or not, is also

needed for referees and journal editors. A reasonable starting point for highlighting
this problem is what we call the parameter in�ation factor (or PIF12) as the
ratio of the multiple correlation standardized parameter �12 and the correlation
coe¢ cient r12, also equal to the ratio of the non standardized multiple regression
parameter �NS1:2=3:::k and the non standardized parameter of the simple regression
�NS1:2 .

PIF12 =
�1:2=:3:::k

r12

=
�NS1:2=3:::k

�NS1:2
: For k = 2 : PIF12 =

�
1� r13

r12
r23

�
� V IF12:

The second equation is the PIF -formula for the trivariate case. As compared to
the variance in�ation factor (V IF ) which depends only on correlation coe¢ cients
between the regressors, the PIF takes also into account the vector r1j of correla-
tions of the regressors with the dependent variable. It measures if the numerator
of the multiple correlation coe¢ cient is su¢ ciently large to bene�t from the mul-
tiplier e¤ect of the denominator (the V IF ) in case of high correlation among
regressors. Highly correlated classical suppressors are obvious candidates for the
high values of the PIF .
When the correlation matrix is not reported in the paper, one may use Ioan-

nidis�[2008] �vibration ratio�as the ratio of the largest versus the smallest e¤ect
on the same association in the paper and related papers. According to Ioannidis
[2008], �the vibration ratio will be larger in small datasets and in those with hazy
de�nitions of variables, unclear eligibility criteria, large numbers of covariates,
and no consensus in the �eld about what analysis should be the default. In most
discovery research, this explosive mix is the rule.�
Once the problem is highlighted, we suggest that applied researchers perform

preliminary tests on simple correlation coe¢ cients of regressors with the dependent
variable. A spurious regression may occur when at least one of the tests of null
hypothesis of a negligible e¤ect of each of the regressors indexed by j (2 � j �
k + 1) on the dependent variable (H0 : r1j < 0:1 when r1j > 0, or H0 : r1j > �0:1
when r1j < 0) is not rejected (say for the regressor indexed by j0), and such
that the test of a null e¤ect of this regressor in a multiple regression is rejected
(H0 : �1j0 = 0). The threshold 0:1 implies that the true correlation coe¢ cient
should explain at least 1% of the variance of the dependent variable in a simple
correlation model (the coe¢ cient of determination is such that: R21:j > 1%). It
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refers to Cohen�s [1988] (pp.79-81) classi�cation of e¤ects in his evaluation of
the power of tests for cross sections where at least a correlation of r1j = 0:1 or
r21j = 1% is required to consider a meaningful "small" e¤ect on the dependent
variable. These tests are based on Fisher�s [1921] Z transformation. They are
available in statistical softwares, such as SAS 9.3 (the instruction is: proc corr
data=database �sher (rho0=0.1 lower);). The test of a null e¤ect (H0 : �

T
1j0 = 0)

is also feasible. But, for very large sample (N > 1000), it will reject the null
hypothesis for very small sample values of the correlation coe¢ cient. One may
also use a rule of thumb excluding regressors with sample correlation coe¢ cient
such jbr12j < 0:1.
5. Classical suppressor regressions: Aid, Policies and Growth

This example shows using the PIF and tests on correlation coe¢ cients would
have helped referees of Burnside and Dollar�s [2000] paper. This paper states that
real per capita gross domestic product (GDP) growth depends signi�cantly (at
the 5-percent level) on (Aid/GDP)�Policy, where the policy index is found by
doing an auxiliary regression:

Policy = 1:28 + 6:85 � Budget Surplus� 1:40 � In�ation+ 2:16 �Openness.

They use an unbalanced panel including 56 countries over six four-years periods
between 1970 and 1993 (N = 275 observations). However, the paper faces two
main problems: It presents a spurious regression and its results depend on includ-
ing or excluding a few outliers. To the �rst problem: In regression 4 (table 4), there
are spurious regression e¤ects for (Aid/GDP)�Policy and (Aid/GDP)2�Policy,
with statistical signi�cance at the 5-percent level. Both regressors are weakly
correlated with the dependent variable but highly correlated among themselves:
r12 = 0:128, r13 = 0:058, r23 = 0:92;with PIF12 = 0:203=0:095 = 2:13 and
PIF13 = �0:019=0:00458 = �4:15 (with sign reversal). With respect to the con-
trol variables, there is another spurious e¤ects with statistical signi�cance at the
10-percent level, for Assassinations and the interaction term Ethnic fractional-
ization � Assassinations: r14 = 0:063, r15 = 0:039; r45 = 0:86 with PIF14 =
�0:45=� 0:06296 = 7:15 and PIF15 = 0:80=� 0:03934 = �20:3.
The tests of the correlation with the dependent variable H0 : r1j = 0 do

not reject the null hypothesis at the 5-percent level for 6 regressors: Log(GDP)
at the beginning of each period, Ethnic fractionalization, Assassinations, Ethnic
fractionalization � Assassinations, M2/GDP lagged, (Aid/GDP)2�Policy. The
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more restrictive test: H0 : rT1j < 0:1 when rT1j > 0 does not reject the null
hypothesis at the 5-percent level for (Aid/GDP)�Policy: r16 = 0:128, p-value
= 0:318. The more restrictive test: H0 : rT1j > �0:1 when rT1j < 0 does not
reject the null hypothesis at the 5-percent level for Aid/GDP and growth negative
correlation coe¢ cient: r12 = �0:173, p-value = 0:109.
These results on spurious regressions do not change when using the larger data

set available online by the authors (the number of observations is smaller in their
reported regressors because observations are missing for some other regressors).
The Aid/GDP and growth correlation is r16 = �0:032 for N = 505 observations
and H0 : r16 = 0 is not rejected (p-value = 0:466). The (Aid/GDP)�Policy and
(Aid/GDP)2�Policy coe¢ cients are r12 = 0:077 and r13 = 0:028; respectively,
for N = 348 observations. The null hypothesis, r12 = 0; is not rejected at the
5-percent level (p-value = 0:148).
With respect to the second problem, one may increase a too small correla-

tion with the dependent variable by omitting or adding observations. In their
regression (5) reported in table 4, Burnside and Dollar [2000] suppress 5 outliers
which simultaneously are some of the extreme values of the (Aid/GDP)�Policy
and have a large negative or positive in�uence on the slope of (Aid/GDP)�Policy
(their �gure 1): Gambia 86-89, 90-93, Guyana 90-93, Nicaragua 86-89, 90-93. On
this sample of 270 observations, the correlation coe¢ cients with the dependent
variable increases: r12 = 0:148, r13 = 0:113; r23 = 0:92. Burnside and Dollar
[2000] �gure 1 also reveals that there remain four other outliers (Botswana 1978-
1981, 82-85, 86-89 and Mali 86-89) which were not removed from the regression
(4). When removing these four outliers, (266 observations), the correlation co-
e¢ cients decreases: r12 = 0:014, r13 = �0:065; r23 = 0:88. When one removes
one, then 2, 3 and 4 each of these outliers starting with Botswana 1978-1981, the
coe¢ cient of (Aid/GDP)�Policy falls gradually from 0:19� to 0:17� (p = 0:04),
0:10 (p = 0:19), 0:05 (p = 0:60) and �0:02 (p = 0:77) (p is the p-value of the t-test
of the parameter, * indicates statistical signi�cance at the 5-percent level) The
0:19� statistically signi�cant parameter of regression (5) is driven by Botswana
data. Botswana, a high growth country in Africa which received relatively more
aid/GDP than other countries. It is an outlier in the regression because its value
is one for the Sub-Saharan dummy regressor, whereas nearly all the other Sub-
Saharan countries grew less, so that this dummy has a robust negative correlation
with growth. The authors�choice to remove 5 outliers out of 9 in regression (5)
corresponds to the largest value of the parameter of Aid/GDP�Policy.
Regression (5B) replicates regression (4) on this data set with 270 observations
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including the highly correlated regressor (Aid/GDP)2�Policy. This regression
is not reported in the published article. The signs are reverted for Aid/GDP,
(Aid/GDP)�Policy, (Aid/GDP)2�Policy as compared to regression (4). The
(Aid/GDP)�Policy parameter is now negative (�0:13) and no longer signi�cant.
This shows that the statistical signi�cance of (Aid/GDP)�Policy of the spurious
e¤ect found in regression (4) is not robust to the removal of �ve outliers.
Once spurious e¤ects are removed in the regressions, GDP growth increases

with the macroeconomic policy index, the institutional quality and the East Asian
countries dummy and decreases with the Sub-Saharan countries dummy.
Winner�s curse paper. Ioannidis [2008] and Ioannidis and Trikalinos [2006]

�nd support of winner�s curse for papers in many �elds of clinical research and
epidemiology. Finding unexpected and large e¤ects leads to higher probability to
be published in top journals. These e¤ects are then contradicted in lower ranked
journals accepting replications of initial ideas.
The �rst step which followed Burnside and Dollar�s paper was a controversy

on the estimated e¤ect. Easterly, Levine, and Roodman [2004] showed that, for
example, the sign on aid/GDP�Policy is not stable when including 80 observations
to the Burnside and Dollar�s sample. In the previous section, we showed that it
is not stable neither when excluding only 4 observations, in particular 3 from
Botswana (table 4, equation 5B).
In a second step, a number of researchers followed Burnside and Dollar [2000].

They interacted aid with other terms, (e.g. with the fraction of a countries area
that is in the tropics), split aid into subcomponents (bilateral versus multilateral
�ows, technical assistance and non-technical assistance, project aid and program
aid, productive and unproductive aid, and so on), or introduced new terms that
are inherently correlated with aid/GDP, e.g. a measure of aid instability or un-
predictability that tends to scale with aid/GDP. They include in the regression
at least another classical suppressor that is highly correlated with aid. Roodman
[2008] mentions that for these statistically signi�cant pairs of variables: �Some of
the coe¢ cient magnitudes stretch credulity. Few of the studies report testing the
variables of interest individually.�
In a third step, a meta-analysis by Doucouliagos and Paldam [2009] includes

up to 355 estimates from 31 articles of this literature dealing with �conditional�
aid e¤ectiveness, using non linear models with quadratic and/or interaction terms.
They conclude that �the aggregate coe¢ cient to the interaction between foreign
aid and policy proves to be very close to zero�. They found similar results for aid-
growth studies dealing with diminishing returns to aid, with a high correlation
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among the regressors aid/GDP and (aid/GDP)2, and for the overall literature
aid/growth literature including up to 543 estimates of the partial e¤ects found in
68 published papers (Doucouliagos and Paldam [2008]). Using meta-analysis, the
average partial correlation coe¢ cient converges to zero, which is also the value of
the simple regression coe¢ cient between aid and growth.
The overall record in the �eld of aid and growth in the last 15 years is that

a large amount of researchers scarce resources were diverted into spurious and/or
outliers driven regressions including highly correlated classical suppressors with
statistically signi�cant oversized estimated parameters.

6. Conclusion

Highly correlated classical suppressors may foster the publication of spurious re-
gressions and/or unstable regressions which presents statistically signi�cant, large
parameters, which are highly sensible to a few outliers. We advocate a very cau-
tious use of classical suppressors in multiple regressions. If ever they are included
in a regression, applied researchers and journal editors should provide a particu-
larly detailed analysis of outliers.
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Figure 1, 2, 3 and 4: The critical regions for the tests H0 : r12 = 0,
H0 : r13 = 0; H0 : �13 = 0 for N = 102, t = 2, r12 = f (r13) ; r23 = 0 (graph 1)
then 0:5 (graph 2), 0:95 (graph 3) and 0:99 (graph 4).
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Feasible trivariate regressions are inside the blue ellipse. The green line corre-
sponds to the null hypothesis for the multiple regression H0: �12 = 0. The critical
region of the t-test related to H0: �12 = 0 lies outside the red ellipse and inside
the blue one. Inside the square delimited by red line around r12 = r13 = 0 is
where both hypothesis of classical suppressors H0 : r12 = 0, H0 : r13 = 0 are not
rejected.
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Table 4 - OLS Growth Regressions: Using All Countries and the Policy Index.
BD (3) (4B) BD (4) BD (5) (5B) (5C)

Initial GDP
-0.61
(0.56)

-0.62
(0.56)

-0.56
(0.56)

-0.60
(0.57)

-0.68
(0.57)

-0.70
(0.57)

EF: Ethnic
fractionalization

-0.54
(0.72)

-0.56
(0.72)

-0.42
(0.73)

-0.42
(0.72)

-0.52
(0.71)

-0.47
(0.72)

Assassinations (A)
-0.44
(0.26)

-0.44
(0.26)

-0.45
(0.26)

-0.45
(0.26)

-0.45
(0.26)

-0.41
(0.26)

EF � A 0.82
(0.44)

0.80
(0.44)

0.80
(0.44)

0.79
(0.44)

0.79
(0.43)

0.72
(0.44)

Institutional quality
0.64*
(0.17)

0.64*
(0.17)

0.67*
(0.17)

0.69*
(0.17)

0.63*
(0.17)

0.64*
(0.17)

M2/GDP (lagged)
0.014
(0.013)

0.014
(0.013)

0.016
(0.014)

0.012
(0.014)

0.014
(0.013)

0.008
(0.014)

Sub-Saharan Africa
-1.60*
(0.73)

-1.60*
(0.73)

-1.84*
(0.74)

-1.87*
(0.75)

-1.72*
(0.74)

-1.85*
(0.74)

East Asia
0.91
(0.54)

0.96
(0.56)

1.20*
(0.58)

1.31*
(0.58)

1.11*
(0.56)

1.14*
(0.56)

Policy Index
1.00*
(0.14)

0.97*
(0.19)

0.78*
(0.20)

0.71*
(0.19)

0.87*
(0.18)

0.85*
(0.18)

Aid/GDP
0.034
(0.12)

0.015
(0.012)

0.049
(0.12)

-0.021
(0.16)

-0.11
(0.17)

0.026
(0.16)

(Aid/GDP)�Policy _
0.013
(0.049)

0.20*
(0.09)

0.19*
(0.07)

-0.13
(0.15)

-0.025
(0.09)

(Aid/GDP)2�Policy _ _
-0.019*
(0.0084)

_
0.065*
(0.028)

_

Observations 275 275 275 270 270 266

R
2

0.36 0.35 0.36 0.36 0.36 0.38
Notes: The dependent variable is real per capita GDP growth. White het-

eroskedasticity consistent standard errors are in parentheses. Regressions (3), (4)
and (5) are in Burnside and Dollar [2000] article (there is a typo in BD�s article
for regressions 4: the parameter is 0.049 for the variable Aid/GDP). * statistical
signi�cance at the 5-percent level.
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