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Abstract

Bank liability guarantee schemes have traditionally been viewed as costless measures
to shore up investor confidence and stave off bank runs. However, as the experience of
some European countries, most notably Ireland, has demonstrated, the credibility and
effectiveness of these guarantees is crucially intertwined with the sovereign’s funding
risks. Employing methods from the literature on global games, we develop a simple
model to explore the functional co-dependence between the rollover risks of a bank and a
government, which are connected through the government’s guarantee of bank liabilities.
We show the existence and uniqueness of the joint equilibrium and derive its comparative
static properties. In solving for the optimal guarantee, we further show that its credibility
may be improved through policies that promote balance sheet transparency.

Keywords: bank debt guarantees, transparency, bank default, sovereign default, global
games
JEL classification codes: G01, G28, D89

1. Introduction

Motivated by the multitude of bank debt guarantee programs in many countries that
were issued mainly in the aftermath of the Lehman default in 2008, this paper asks under
which conditions such guarantee schemes can be successfully implemented. We tackle
this question by breaking it down into several smaller, more specific questions. Firstly,
when a government is itself exposed to funding risks, how does the issuance of a banking
sector liability guarantee scheme affect the behavior of sovereign and bank creditors?
Secondly, how does the guarantee impact on the ex ante probabilities of banking and
sovereign default, as well as on the likelihood of a systemic crisis? Thirdly, is there a
guarantee that optimally trades off the risk of sovereign and bank default? Finally, how
does the effectiveness of the (optimal) guarantee depend on policies that influence balance
sheet transparency and the liquidity of banks and sovereigns alike?

The global financial crisis was marked by a severe loss of confidence by investors
in financial markets the world over. The triggers were revelations of losses on United
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States sub–prime mortgages and other toxic financial assets by banks. An immediate
consequence was a freeze in interbank money markets, as banks ceased lending to each
other.1 Figure 1 illustrates this development. It shows the EURIBOR-OIS spread, a
measure for interbank market tensions in the euro area, which sharply and abruptly
increased by a factor of 3 following the collapse of Lehman Brothers in September 2008.
Similarly, Figure 2 shows the change in banking sector and sovereign credit default swap
(CDS) spreads between January 2007 and late September 2008 (shortly after the default
of Lehman). Approximating the change in default probabilities by the change in CDS–
spreads, one sees a marked increase in the default probabilities banking sectors in almost
all countries.

In light of such deteriorating conditions, governments the world over sought to intro-
duce measures to mitigate systemic risks and shore up confidence in their domestic finan-
cial sectors. An opening salvo for many was to introduce contingent guarantee schemes
for retail and wholesale deposits in banks. These schemes were viewed as cost effective
measures to stave off bank runs, whereby governments lend their own creditworthiness
to the financial sector.2 Table 1 provides a brief overview of schemes introduced in sev-
eral countries. Figure 3 compares the size of these schemes in percent of the respective
country’s GDP. The schemes in Italy and Spain amounted to about 3% and 9% of GDP, re-
spectively, while in Austria and the Netherlands they totaled at, roughly, 30% of GDP. All
these were, however, dwarfed by the measures introduced in Ireland, which guaranteed
all bank liabilities for a period of two years with no monetary cap. The broad mandate of
the Irish scheme, which amounted to roughly 244% of GDP followed from the consensus
that, as Patrick Honohan (2010), governor of the Central Bank of Ireland, noted, "No
Irish bank should be allowed to fail".

In general, the guarantee schemes were largely successful in alleviating banking sec-
tor default risk, yet, at the same time, they led to an increase in sovereign default risk.
This can be seen from Figure 4 which compares the change in sovereign CDS–spreads
with the change in banking sector CDSs. Based on this measure, it appears that the
increase in the sovereigns’ default probabilities was of much smaller magnitude than
the reduction in the respective banking sector default probability. This phenomenon in-
dicates that the guarantees not only led to a re–allocation of risks between banks and
governments, but they may have also reduced economy–wide risks. We will come back to
this phenomenon in Section 6 below.

Again, the case of Ireland requires particular attention as it can be considered exem-
plary for the dramatic consequences that may follow from tying the government’s funding
situation to that of its banking sector by means of debt guarantees. Before the crisis, Ire-
land was a ‘sound’ country with low government debt and deficit, enjoying decent growth
prospects and facing low sovereign funding costs (see Figure 5). Against this background,
Ireland issued its first bank liability guarantee program in October 2008. The guarantee
had the immediate effect of driving down CDS–spreads for the banking sector. However,
questions pertaining to the guarantee’s credibility and the Irish government’s ability to
pay out the guarantee were it to fall due, came to the fore and sovereign funding costs and
default risk began to increase. Moreover, the guarantee obviously failed to prevent large
withdrawals away from Irish banks to the financial sectors in countries like Germany,
the Netherlands and Luxemburg. Figure 6 illustrates this development by showing the

1See Taylor and Williams (2008) or Holthausen and Pill (2010) for a detailed investigation of interbank
money markets during the 2007–08 financial crisis.

2See Schich and Kim (2011) for an overview of banking sector safety nets.
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net TARGET2 liabilities of the Irish Central Bank, which serves as a proxy for the cu-
mulative net outflows of euro denominated liquidity.3 These events culminated in the
nationalization of Anglo-Irish Bank in January 2009, and the Irish government seeking
a bail-out on 21 November, 2010, jointly from the European Union’s European Financial
Stability Facility and the International Monetary Fund.

The ‘Celtic case’, as we may call it, is far removed from what governments would hope
to achieve by issuing bank debt guarantee schemes. The events that followed were a
direct consequence of the false belief that a guarantee will shore up investor confidence,
without placing any strain on a government’s own funding needs, and hence, on the cred-
ibility in keeping its guarantee promises. Or, as one financial market participant bluntly
put it to the Wall Street Journal (2011) when asked to comment on the on-going banking
sector problems in the euro area, “How useful would bank guarantees from member states
be if these member states are themselves shut out of financial markets?".

In this paper we present a simple model consisting of a government, one bank and
a large pool of bank and sovereign creditors. Bank creditors must decide whether to
rollover their loans to the bank or to foreclose on them. Their decisions depend on the
bank’s recourse to liquidity and the contingent guarantee provided for by the government.
Sovereign creditors, in turn, decide on whether to continue lending to the government or
to withdraw. The decisions of sovereign creditors depend on the government’s available
resources and the possible payment of the bank guarantee. Using standard techniques
from the literature on global games, we embed our model in an incomplete information
setting, where creditors face strategic uncertainty concerning the actions of other credi-
tors, as well as fundamental uncertainty over the bank’s and the government’s recourse to
liquidity. Following well established lines of reasoning, we show that our model exhibits
a unique equilibrium in threshold strategies, and that there are no other equilibria in
non-threshold strategies. Key to this result is the assumption that the bank’s recourse to
liquidity and the government’s debt are uncorrelated. We justify this assumption on the
grounds that large banks can readily tap into global financial markets to shore up their
liquidity, while a government’s fortunes are more closely tied to its country’s productivity.

Our model displays strategic complementarities within each group of creditors. That
is, the incentives of individual bank (sovereign) creditors to rollover are increasing in
the mass of bank (sovereign) creditors who also rollover. Furthermore, bank creditors’
incentives to rollover are also increasing in the mass of sovereign creditors who lend to
the government. Hence, sovereign creditors’ actions are strategic complements for bank
creditors. But the converse does not hold. The incentives of a sovereign creditor to lend
are decreasing in the mass of bank creditors who rollover. The actions of bank creditors
are therefore strategic substitutes for sovereign creditors.

To better appreciate this latter result, suppose that, following the introduction of a
guarantee, a large fraction of bank creditors’ rollover their loans. However, if the bank
were to still fail, a large guarantee payout would come due, which would add to the gov-
ernment’s debt burden. Anticipating such an outcome, sovereign creditors would become
doubtful about the government’s solvency and more reluctant to rollover their own claims.
This result must be interpreted with caution and against the background of our model.

3While the Irish guarantee scheme was introduced in October 2008, the outflows continued until May
2009, when they peaked at approximately e100 billion. While there was a reversal of trends between May
and September 2009, the pace of withdrawals accelerated shortly thereafter and continued through 2010,
and peaking only in January 2011. See Bindseil and König (2012) for details on the role and mechanics of
the TARGET2 system during the financial crisis.
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Although the government in the model wishes to avoid a bank default, which would result
in real output losses, we abstract away from direct payments being made by the bank to
the government. If, for example, the government could collect taxes from the bank, its liq-
uidity situation would be directly intertwined with the bank and the strategic substitutes
effect would be less pronounced. However, since such taxes may distort the incentives of
the bank to act with prudence and remain solvent, we abstract from their inclusion in
order to derive the ’pure’ strategic interactions between the different groups of creditors.
Finally, using numerical methods we investigate how the optimal guarantee size, and
the welfare properties it induces, relate to the underlying model parameters. The opti-
mal guarantee is obtained by minimizing a cost of crisis function, which is a weighted
sum of the output losses attributed to individual bank and government defaults, and the
dual default event. Increases in the ex ante expected recourse to liquidity of bank and
government sustain a maximal guarantee level policy. We also find that policies that pro-
mote bank’s balance sheet transparency are welfare enhancing. These gains are further
improved with added balance sheet transparency of the government.

The paper is structured as follows. We introduce the canonical bank debt rollover
model in Section ??. In Section 4, the guarantee-funding problem of a sovereign guar-
antor is explicitly introduced. The comparative statics properties of this extended model
are provided in Section ??. Most of the mathematics and all proofs are relegated to the
Appendix.

2. Relation to the Literature

The modern theoretical perspective on banks’ maturity and liquidity mismatches, and
deposit guarantees is based on the seminal model of Diamond and Dybvig (1983) on opti-
mal deposit contracts and bank runs. They show the existence of multiple, self-fulfilling
equilibria for a bank with short-term financed illiquid assets. In one equilibrium, the
bank is run upon by all depositors and fails as its reserves are not sufficient. In the sec-
ond equilibrium, only a small amount of withdrawals occurs and the bank’s liquidity is
sufficient to avoid default. The two equilibria are brought about by a mis-coordination of
beliefs. Deposit insurance, which is financed by taxes, helps overcome this multiplicity
by increasing depositors’ expected payoffs from not prematurely withdrawing. The exis-
tence of such a deposit insurance is sufficient to avoid a bank run, without ever having to
be paid out.

Morris and Shin (2000) and Goldstein and Pauzner (2005) solve the multiple equilib-
ria problem by extending the setup of Diamond and Dybvig to an incomplete information
setting where information on fundamentals, i.e., the liquidity of the bank, is not common
knowledge. Employing the global games approach of Morris and Shin (1998, 2003), they
solve for the unique equilibrium in threshold strategies. If the information received by
depositors is sufficiently precise and banks’ fundamentals are below a critical thresh-
old, most depositors withdraw, leading to bank failure. If fundamentals are strong, then
most depositors stay. Importantly, in equilibrium the amount actually paid out due to
the deposit guarantee is low as there are only a few depositors who roll over despite the
bank’s default. This logic has recently been translated to government guarantee schemes
by Kasahara (2009) and Bebchuk and Goldstein (2010). Kasahara considers a standard
global game model, where creditors to a firm enjoy the benefit of a government-financed
debt guarantee. He shows that the guarantee removes inefficient coordination failures
only if the government combines this policy with an information policy where it provides
a sufficiently precise public signal about the firm’s fundamental. While the guarantee
in Kasahara’s model is exogenously financed, he also considers potential costs that may
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arise when the guarantee creates adverse incentives and leads to a moral hazard problem
on the side of the firm.

Bebchuk and Goldstein (2010) consider a stylized global game model where the coor-
dination failure occurs among banks who can decide whether to lend to the real economy
or not. Among other policy measures, they consider how a guarantee of banks’ loans could
overcome the no-lending- or ‘credit-freeze-equilibrium’. Similar to the effect of a deposit
insurance in a bank-run model, they find that when the guarantee is sufficiently high,
the risk of coordination failure may be reduced to zero. Goldstein and Bebchuk focus
especially on the ‘global game solution’ of vanishing fundamental uncertainty and they
conclude that “(...) government’s guarantees (...) do not lead to any capital being spent
(...) this mechanism leads to an improvement in the threshold below which a credit freeze
occurs without any actual cost” (p. 25). The authors nevertheless acknowledge that the
validity of a guarantee mechanism crucially “depends on the credibility of the government
in providing the guarantee” (p. 26). Our model adds to this recent literature by explic-
itly considering the credibility of the guarantee by adding a refinancing problem for the
sovereign guarantor. As will be explained in greater detail below, Goldstein’s and Be-
bchuk’s conclusion still hold in our model whenever fundamental uncertainty vanishes.
Yet, whenever bank creditors face some fundamental uncertainty, the guarantee induces
a higher default risk of the the sovereign.

Cooper (2012) shows a similar result in a multiple equilibrium model of sovereign
debt pricing. He studies how a guarantee by a sound country shifts strategic uncertainty
towards the guarantor. In the absence of fundamental uncertainty, beliefs of creditors are
not affected and the guarantee simply acts as a device that selects the good equilibrium.
Yet, when fundamental uncertainty is present, the guarantee may influence the price
of the sound country’s debt. The guarantee then connects the countries and creates a
contagion channel which was not present before.

Acharya et al. (2011) consider the related problem of financial sector bailouts and
their impact on sovereign credit risk. Bank bailouts are financed by taxing the non-
financial sector of the economy. While the bailout is successful in alleviating problems of
the banks, the higher tax burden of the non-financial sector reduces the economy’s growth
rate. The government’s task is thus to optimize the economy’s welfare and to set the opti-
mal tax rate. We abstract in this paper from taxation and finely focus on the coordination
problem between bank and sovereign creditors. This emphasis on joint coordination fail-
ures allows us to address more clearly the issues of the governments’ “ability-to-pay” and
the credibility of the guarantee. The government in our model then sets the optimal
guarantee in order to minimize the expected costs of crises and coordination failures.

Closely related to our model is the ‘twin crises’ global game of Goldstein (2005), which
also includes two groups of agents, currency speculators who attack a pegged exchange
rate, and bank creditors who hold foreign currency denominated claims against a domes-
tic bank. The (exogenous) political decision by a government to peg the exchange rate
connects the actions of the two groups of agents. The greater the fraction of specula-
tors who attack the currency, the more likely a devaluation of the currency becomes, and
hence the more likely is the bank to default due to the currency mis-match on its balance
sheet. Conversely, the greater the fraction of bank creditors who withdraw their funds,
the larger is the outflow of foreign reserves, and it becomes more likely that the currency
peg will break down. The actions of bank creditors and speculators are strategic comple-
ments. They reinforce each other which gives rise to a vicious circle. In our model it is
also an exogenous political decision, guaranteeing bank debt, that leads to the connec-
tion of the actions of sovereign and banking creditors. But unlike Goldstein’s twin crisis
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theory, our model does not universally display strategic complementarities between the
actions of the two groups. While foreclosures of sovereign creditors spur withdrawals
of bank creditors, since the former raise the likelihood of a sovereign default and there-
fore decrease the likelihood of a guarantee payment to the latter, the converse does not
hold. Moreover, in Goldstein’s model, the bank’s and the sovereign’s financial strength
is determined by the same fundamental, whilst the financial strength of the respective
institutions in our model is driven by different, independently distributed fundamentals.

Global games with different fundamentals have not yet been studied in the literature
to a great extent. Two examples related to our paper are Dasgupta (2004) and Manz
(2010). Dasgupta models financial contagion in a global game between two banks in dif-
ferent regions that are exposed to independent regional shocks. Linkages between banks
are created by cross-holdings of deposits in the interbank market and regional shocks
may, therefore, trigger contagious bank failures in equilibrium. Manz also considers
a global game with two independently distributed fundamentals to study information-
based contagion between distinct sets of creditors of two firms. Creditors have imperfect
information about both, their debtor firm’s fundamental and a common hurdle function
which a fundamental must pass for the respective firm to become solvent. In contrast to
Dasgupta, his model has a sequential structure where creditors to the second firm can
observe whether the first firm failed or not. This observation acts like a common signal
and provides second firm creditors some information about the hurdle which in turn in-
fluences their decision to liquidate their own claim or not. While we also resort to the
assumption of independently distributed fundamentals, creditor decisions are taken si-
multaneously, which implies that informational contagion, based on the observation of a
particular outcome in one refinancing game, cannot occur. Rather, the spill-overs between
the bank’s and the sovereign’s refinancing problem are determined by the guarantee.

3. Canonical bank debt rollover game

In this section, we describe the canonical rollover game that serves as the workhorse
for the remainder of the paper. We introduce an exogenously financed guarantee and
discuss the relationship between balance sheet transparency and the costliness of the
guarantee.

3.1. Model description
A bank, indexed b, is indebted to risk-neutral creditors nb ∈ [0, Nb], where Nb ∈ R+

measures the bank’s exposure to funding illiquidity. Creditors hold identical claims
against the bank with face value of one monetary unit. The bank’s recourse to cash
is summarized by the random variable θb ∈ [−ηb,ηb +θ0

b]. We may think of θb as being
comprised of two parts. First, there are the liquid assets (cash) on the bank’s balance
sheet, which directly contribute to increasing θb. Second, the bank can raise cash by
entering into secured finance arrangements – for example, repurchase agreements and
covered bonds – where it pledges illiquid assets to investors in exchange for cash. These
investors, who are not explicitly modeled, include other commercial banks, hedge funds,
and also the central bank. The size of θb is thus further influenced by haircuts to collat-
eral and fire-sale discounts. In total, the ex-ante mean recourse to liquidity is given by
θ0

b/2.
Creditors simultaneously decide whether to rollover their loans to the bank, or to

foreclose on them and walk away with their initial deposits. The set of actions of creditor
nb is given by {0,1}, where 0 denotes that the creditor rolls over his loan, while 1 denotes
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withdrawing. Defining λb ∈ [0,1] as the fraction of bank creditors who withdraw, the
bank defaults whenever aggregate withdrawals exceed the available liquid resources,

λb Nb ≥ θb.

We assume that all bank creditors have common payoffs, which are summarized in Table
2.

Bank
Default Survive

Bank Creditor
Withdraw Cb Cb
Rollover ` Db

Table 2: Typical bank creditor’s payoffs.

Withdrawal by a creditor may entail additional transaction costs, which are sub-
tracted from the unit claim held against the bank. Thus, the net payoff from withdrawing
is Cb ≤ 1, which is independent of whether the bank defaults or survives. If, however, the
creditor rolls over his loan and the bank survives, he is paid back Db > 1, which includes
both the original amount lent, plus additional interest payments. Finally, if the bank de-
faults, then creditors who rolled over their loans receive a fraction ` of their unit claim.
Hence, `×1 can be interpreted as the payment stemming from a bank liability guarantee
scheme of the government. For the moment we assume that ` is exogenously financed
and that creditors receive ` with probability one in case it is due. We further assume that
Db > Cb ≥ `≥ 0, which entails that creditors face a coordination problem.4

3.2. Tripartite classification of the fundamental
The bank debt rollover game exhibits a tripartite classification of the fundamental

θb, which is characteristic of such coordination games.5 For θb < 0, the bank always
defaults, irrespective of the fraction λb of creditors who foreclose. We refer to this as the
fundamental insolvency case or the efficient default. It is a dominant action for creditors
to withdraw in this case. For θb > Nb, the bank always survives, even if all creditors were
to foreclose their loans. Here it is dominant for all creditors to rollover their loans.

The unique Nash-Equilibrium for θb < 0 is all creditors withdrawing and the bank
defaulting, whereas the unique Nash-Equilibrium for θb > Nb is all creditors rolling over
their loans and the bank surviving. However, under the assumptions of common knowl-
edge of θb, the game exhibits multiple (pure strategy) equilibria for intermediate values
θb ∈ [0, Nb]. The equilibria in this interval are sustained by common self-fulfilling expec-
tations about the behavior of other creditors. In one equilibrium, each creditor expects
that all other creditors will withdraw, and hence withdrawing is the best response to this
belief. In aggregate, this leads to bank default, which vindicates the initially held beliefs.
In the second equilibrium, each creditor expects all other creditors to rollover their loans.
This implies that each creditor chooses to rollover as the best response to this belief. The
resulting outcome is one where the bank survives, which once again vindicates the beliefs
of creditors.6

4For simplicity, we deliberately ignore the possibility of default due to insolvency at some later date
which may occur even though the rollover has been successfully managed.

5See e.g. Diamond and Dybvig (1983), in the context of bank-runs, and Obstfeld (1996) in the context of
currency crises.

6See Morris and Shin (2003).
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3.3. Information structure and strategies
To eliminate the multiplicity of equilibria we use the global games approach and relax

the assumption of common knowledge about θb. This is replaced by a weaker assump-
tion that creditors have heterogeneous and imperfect information concerning the bank’s
fundamental. Specifically, creditors receive private signals about the fundamental before
choosing their action. The signal is modeled as xnb = θb + εnb , where εnb is an idiosyn-
cratic i.i.d. noise term that is uniformly distributed over the support [−εb,εb]. Following
the literature on transparency, as e.g. Heinemann and Illing (2002), Bannier and Heine-
mann (2005), and Lindner (2006), the dispersion in bank creditors’ information εb can be
interpreted as the degree of balance sheet transparency in the banking sector. A higher
degree of transparency is therefore associated with a smaller εb and a higher precision
of private signals which enables creditors to better infer the true fundamental from their
observed signal. Creditors use their private signals and the commonly known prior to
form individual posteriors θb|xnb

by means of Bayesian updating. Furthermore, to apply
global game methods, we need to ensure that the support of the fundamental distribu-
tion is sufficiently large to include an upper and a lower dominance region. Given the
support of the signal error, a creditor knows for sure that the bank will default when-
ever he receives a signal xnb < −εb (even if all other creditors roll over). And similarly,
whenever he receives a signal xnb > Nb + εb, he knows for sure that the bank will be
able to continue (even when all other creditors withdraw). We assume that the support
of θb is sufficiently large to include states where all creditors find either rolling over or
withdrawing dominant, i.e.

[−2εb, Nb +2εb]⊂ [−ηb,θ0
b +ηb].

A strategy for a typical creditor is a complete plan of action that determines for each
realization of the signal whether the creditor rolls over or withdraws. Formally, a strategy
is a mapping snb : xnb 7→ {0,1}. Strategies are symmetric if snb (·) = sb(·) for all nb. A
strategy is called a threshold strategy if a creditor chooses to withdraw for all xnb below
some critical x̂nb and rolls over otherwise. Finally, a symmetric threshold strategy is a
threshold strategy where all creditors use the same critical x̂b.

3.4. Equilibrium
A symmetric equilibrium of the bank debt rollover game with heterogeneous informa-

tion for the creditors is given by the strategy sb(·) and aggregate choice λ(θb) such that
creditors maximize their expected payoffs and

λb(θb)= 1
2εb

∫ θb+εb

θb−εb

sb(xnb )dxnb .

It is a well established result that coordination games, like our bank debt rollover
game, exhibit a unique equilibrium in symmetric threshold strategies.7 The following
proposition re-states this result in terms of our model.

Proposition 1. The bank debt rollover game has a unique equilibrium summarized by
the tuple (x̂b, θ̂b) where

x̂b = θ̂b +2εb

(
θ̂b

Nb
− 1

2

)
(1)

7See Morris and Shin (2003). For a general class of distributions of the fundamental, other than the
uniform distribution, uniqueness requires that the private signals of creditors are sufficiently precise, i.e.
εb to be sufficiently small.

8



and
θ̂b =

Nb (Cb −`)
Db −`

. (2)

All creditors withdraw if xnb < x̂b and they rollover if xnb > x̂b. The bank defaults if and
only if θb < θ̂b.

Proof. See Morris and Shin (2003) for the proof of existence and uniqueness and the
Appendix for the calculations of formulae (1) and (2).

3.5. Changes to the guarantee size
Albeit stylized, we interpret ` as the payment from a bank liability guarantee scheme

provided by the government. Creditors receive ` in the event that they rollover their
loans and the bank defaults. If creditors choose to recall their loans, they always receive a
payoff of Cb.8 In absence of the guarantee, i.e. `= 0, bank creditors will choose to rollover
their loans as long as the probability attached to the bank’s survival is sufficiently high.
In terms of the payoffs, they will rollover as long as the spread between Db and Cb is
large enough to compensate for incurring the risk of ending up with a zero payoff in case
of bank default. A positive guarantee ` > 0 reduces the opportunity cost of rolling over
(given by Cb−`) and therefore increases creditors’ incentives to rollover. All other things
equal, a larger guarantee lowers the critical thresholds θ̂b and x̂b, and leads to a higher
ex ante survival probability,

∂θ̂b

∂`
= Nb (Cb −Db)

(Db −`)2 < 0.

3.6. Guarantees and transparency
Such comparative static results and conclusions may have contributed to create the

deceptive belief that bank liability guarantee schemes are a costless measure to shore
up confidence in financial institutions. And while it is true, that the guarantee serves
as a device to change the incentives of creditors to coordinate on the efficient equilib-
rium, the question remains whether this is indeed a costless policy. To better appreciate
the conditions under which this holds true, consider the case where creditors face only

8The fact that creditors always receive Cb when they choose to foreclose deserves some comment. The in-
terpretation of θb as available liquid resources implies that the bank is unable to pay one unit per claimant
for θb < θ̂b. A more plausible setup would then be to impose a ‘sequential service constraint’ and assume
that creditors receive only a fraction of the available resources in the case of bank default, which may
be determined by θb, the fraction λb and possible transaction costs. The resulting payoff from withdraw-
ing would inherit a negative dependency on λb. However, the realism added by modeling the problem in
this way has to be traded off against technical difficulties that arise due to the resulting partial strate-
gic complementarities. The proof of equilibrium employed above relies on the existence of global strategic
complementarities, i.e. creditors’ actions strictly decrease in λb. But with the more realistic assumption
of a ‘sequential service constraint’, the expected payoff differential (rolling over vs withdrawing) becomes
increasing in λb over a certain range. However, as Goldstein and Pauzner (2005) show, under the alterna-
tive assumption of the payoff differential obeying a single-crossing property, the nature of the equilibrium
remains unaltered. There is still a unique symmetric threshold equilibrium. Under the further restriction
to uniform distributions, there are also no other non-threshold equilibria. However, this proof is more in-
volved, leading to more complicated comparative statics calculations that continue to remain qualitatively
the same. Thus, to keep the model tractable, we stick to the less realistic assumption that the payoff from
withdrawing is fully safe which guarantees the global strategic complementarity property. This is also in
line with standard practice in the literature, e.g. Chui et al. (2002) or Morris and Shin (2006). Rochet and
Vives (2004) further motivate this approach by appealing to institutional managers who seek to make the
right decision, while their payoffs do not depend directly on the face value of their claims.
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strategic uncertainty about the behavior of other creditors and no fundamental uncer-
tainty about the true realization of θb. This corresponds to a high degree of balance sheet
transparency with εb → 0, which implies that x̂b → θ̂b (see equation (1)). All creditors now
receive almost the same signal and as they all use the same threshold strategy around x̂b,
in equilibrium, either everyone rolls over and the bank survives or everyone forecloses
and the bank defaults. The payoffs to the creditors are then either Db, in case they all
roll over, or Cb if they all withdraw. While the guarantee payment ` raises the credi-
tors’ incentives to rollover, it is never paid out. A policymaker could therefore issue an
arbitrarily large guarantee and effectively control the likelihood of default without ever
having to follow up on its promises. In particular, by setting ` = Cb, the bank’s failure
threshold converges to θ̂b = 0 such that only a fundamentally insolvent bank defaults.
By this choice of guarantee policy, a policy maker may deliberately avoid inefficient bank
runs due to coordination failures.9

The result, that guarantees are costless, changes, however, with a lower degree of
balance sheet transparency and creditors facing fundamental uncertainty, i.e. εb > 0. In
this case, some creditors may decide to rollover their loans due to ‘misleading’ signals
xnb > x̂b, even though the true θb is below θ̂b and the bank defaults. These creditors
become benefactors of the guarantee scheme and receive `. Let γb denote the fraction
of agents who receive the guarantee payment. By the law of large numbers, the fraction
of agents who receive signals above x̂b is given by the probability that a single signal is
above x̂b. So we can write

γ(θb, x̂b, θ̂b)=


0 if θb > θ̂b
θb−x̂b+εb

2εb
if θb − x̂b < εb < x̂b −θb

0 if εb < x̂b −θb

(3)

Figure 6 plots λb and γb against the fundamental θb for the case with the highest de-
gree of balance sheet transparency (dashed lines) and the case with lower transparency
(solid lines). In the former case, λb is a step function with a jump discontinuity at θ̂b.
In the latter case, λb decreases linearly from 1 to 0 over the range [x̂b − εb, x̂b + εb]. γb
is always 0 in the former case, but it increases linearly in θb from 0 to (θ̂b − x̂b +εb)/2εb
over the range [x̂b − εb, θ̂b] in the latter case. This illustrates how balance sheet trans-
parency influences the possible costliness of the guarantee. The fraction of agents who
benefit from the guarantee, and hence the costs created by the guarantee promise, are de-
creasing in the degree of balance sheet transparency. When balance sheet transparency
is rather low, creditors’ information is widely dispersed and many creditors may erro-
neously believe that the bank may not default even if, in fact, it does. These creditors, in
turn, become eligible for the guarantee payment `.

Several vital questions arise from these considerations. To which extent do possible
costs due to the guarantee pose a threat to the guarantor’s own solvency or liquidity
position? Are guarantees still effective in reducing the likelihood of bank default when-
ever one takes the funding risk of the guarantor into account? What are the effects of
variations in bank and guarantor liquidity parameters on the behavior of creditors? In
what follows, we answer these questions by endogenizing the guarantor’s, i.e. the gov-
ernment’s, funding risk in the model.

9Such a policy has its counterpart in the lender-of-last-resort policy of many major central banks that
follow Bagehot’s rule and grant liquidity and emergency assistance only against eligible collateral to banks
that are considered as “sound” by the supervising regulatory authorities.
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λb

θb

θb

x̂′b +εbx̂′b −εb x̂′b θ̂b = x̂b

1

1

γb

1
2

Figure 6: Upper panel: Fraction of bank creditors who withdraw, λb. Lower panel: Fraction of bank
creditors who receive guarantee payment, γb. The case εb = 0 is represented by the dotted lines, whereas
the case εb > 0 is represented by solid lines. An increase in εb does not affect θ̂b, but it changes x̂b to x̂′b.
The diagram is drawn under the assumption that Cb−`

Db−` < 1
2 so that x̂′b < θ̂b if εb > 0.

4. Bank debt rollover in the face of sovereign funding risk

4.1. Model description
Building on the canonical debt rollover model we now explicitly introduce the refi-

nancing problem of the government that issued the guarantee. In case of bank default,
the government pays out ` to those bank creditors that rolled over their loans despite the
default. Yet, the government itself faces a refinancing game played by a set of sovereign
creditors ng ∈ [0, Ng] who are all different from the bank’s creditors. We normalize the
mass of sovereign creditors to unity, Ng ≡ 1. Each sovereign creditor holds a claim with
a face value of one monetary unit against the government. Sovereign creditors decide
simultaneously whether to continue lending to the government, or to withdraw. The gov-
ernment defaults whenever its liquid resources are insufficient to service debt foreclo-
sures and guarantee payments. We represent the government’s liquidity by the random
variable θg, which is uniformly distributed over [−ηg,θ0

g +ηg], where θ0
g/2 is the ex-ante

mean recourse to liquidity. We further make the following

Assumption 1: The government’s liquidity θg and the bank’s liquidity θb are inde-
pendently distributed.

Sovereign creditors receive a noisy signal xng = θg + εng about the government’s liq-
uidity θg, with εng being i.i.d. according to a uniform distribution over [−εg,εg]. As in the
banking game, reduced information dispersion, i.e. a lower εg is associated with a higher
degree of transparency of the government. Assumption 1 then implies that the signals of
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bank and sovereign creditors are completely uninformative about the fundamental of the
respective other entity.

The payoffs to sovereign creditors are given in Table 4.

Government
Default Survive

Sovereign Creditor
Withdraw Cg Cg
Rollover 0 Dg

Table 3: Typical sovereign creditor’s payoffs.

As is the case for bank creditors, a sovereign creditor who prematurely withdraws re-
ceives Cg < 1 which is the unit claims less potential transaction costs. If the government
manages to survive, the creditor who rolls over receives the full claim Dg. If the govern-
ment fails, the sovereign creditors who rolled over end up with a zero payoff as there is
no guarantee in place for them.

The bank’s creditors, however, continue to enjoy the benefit of a guarantee in case the
bank defaults and the government survives. The payoffs for a typical bank creditor are
shown in Table 4 where we have normalized Cb = 1 in order to reflect the relatively small
transaction costs in bank funding markets.

Bank Default
Bank Survive

Govt Survive Govt Default

Bank Creditor
Withdraw Cb = 1 Cb = 1 Cb = 1
Rollover ` 0 Db

Table 4: Updated bank creditor’s payoffs.

Since Assumption 1 appears restrictive, some comments are in order. Firstly, since we
interpret θb and θg as recourses to liquidity for the bank and government, respectively, it
may be argued that the correlation between the liquidity available to an internationally
active and diversified bank and the government of its jurisdiction is low. Indeed, the
liquidity of the government is essentially determined by its revenues from taxes, public
dues and tariffs. In contrast, internationally active banks may tap domestic as well as
international markets and can issue a greater variety of financial instruments. Moreover,
if the bank has branches in other countries, there may be intra-banking group liquidity
transactions, so that the bank’s liquidity depends on the economic fundamentals in those
countries as well. Consequentially, the liquidity situation of the bank need not be strongly
correlated with the liquidity situation of its resident government.10

Secondly, the assumption should be judged against the clear but narrow objective of
our paper, namely that we want to demonstrate how, and to what extent, the introduc-
tion of a guarantee induces a dependence between a sovereign debt and bank run crisis.
The simplest setting for this analysis is one where, absent the guarantee, there are no
dependencies between the two coordination games.

Finally, on purely technical grounds, Assumption 1 allows us to devise a simple proof
for the existence of a unique equilibrium in threshold strategies and the non-existence of
equilibria in other strategies. The intuition behind this result is straightforward. From

10On this point, see also Shin (2012).
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Assumption 1 follows that a bank (sovereign) creditor’s signal is only informative about
the liquidity situation of the bank (sovereign), but completely uninformative about the
liquidity of the sovereign (bank). This implies that we can treat the behavior of sovereign
creditors in the bank rollover game as exogenously given, and vice versa. Hence, given
any arbitrary strategy used by sovereign creditors, we show that the bank creditors’
rollover game has a unique equilibrium in threshold strategies and that there are no
other equilibria in non-threshold strategies. The following Proposition summarizes this
result.

Proposition 2. There exists a unique equilibrium where sovereign and bank creditors
use threshold strategies. There are no other equilibria in non-threshold strategies.

Proof. See Appendix.

As a consequence of Proposition 2 we restrict our attention to threshold strategies for
sovereign and bank creditors. Absent a guarantee, ` = 0, the two rollover problems are
completely independent of each other and the critical thresholds for the government and
the bank can be calculated from the respective formulae in Proposition 1. However, when
the government issues a guarantee of amount ` > 0, its refinancing problem becomes
tied to the bank’s rollover problem. For states of the world where the bank defaults, the
government faces additional costs due to the guarantee payout. This alters the critical
threshold for sovereign creditors, which in turn changes the government’s default point in
all states of the world, even in those where the bank survives. Moreover, the possibility
that the government may default changes the critical threshold of bank creditors and
thus the bank’s default point. We now turn to an explicit derivation of the threshold
equilibrium.

4.2. Bank and government default conditions
The possibility of government default does not alter the form of the bank’s failure con-

dition, which remains λb Nb > θb. Suppose that bank creditors use a threshold strategy
around x̂b. From Equation (1), we obtain that the bank’s default point θ̂b can be written
as a function of the critical threshold signal x̂b as

θ̂b(x̂b)= x̂b +εb

1+2εb N−1
b

. (4)

Thus, the bank fails if and only if θb < θ̂b(x̂b).
In calculating the government’s failure point we must distinguish between two cases.

Firstly, if θb > θ̂b, the bank survives, and the government does not have to make any
guarantee payout. Assuming that government creditors use a symmetric threshold strat-
egy around x̂g, the government defaults whenever λg > θg, where λg is the fraction of
sovereign creditors with signals below x̂g. The government’s failure point is calculated as
the solution to

θ̂g =λg(θ̂g)

LLN= Pr(xng < x̂g | θ̂g)= 1
2εg

∫ x̂g−θ̂g

−εg

du,

yielding

θ̂g =
x̂g +εg

1+2εg
.
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Secondly, if θb < θ̂b and the bank defaults, the government is obliged to pay ` to each
bank creditor who rolled over his loan. Since bank creditors use the threshold strategy
around x̂b, we can use equation (3) to calculate the total guarantee payments, conditional
on the realized θb, as

Nb`×γ
(
θb, x̂b, θ̂b

∣∣θb < θ̂b
)= `Nb

2εb

∫ θb+εb

x̂b

du.

The government’s failure point in case of a bank default then follows by solving

θ̂g − `Nb

2εb

∫ θb+εb

x̂b

du =λg(θ̂g)

LLN= Pr(xng < x̂g | θ̂g)= 1
2εg

∫ x̂g−θ̂g

−εg

du,

which has the explicit solution,

θ̂g =
x̂g +εg

1+2εg
+ εg

εb

`Nb (θb +εb − x̂b)
1+2εg

.

Taken together, the government’s failure point is given by the function

θ̂g(x̂g, x̂b,θb) =


x̂g+εg
1+2εg

if θb ≥ θ̂b(x̂b)
x̂g+εg
1+2εg

+ `Nbεg
εb(1+2εg) (θb +εb − x̂b) if θb < θ̂b(x̂b)

(5)

The government defaults if and only if θg < θ̂g(x̂g, x̂b,θb).

4.3. Creditor indifference conditions
Given the default points of bank and government, we now turn to the expected payoff

differentials for typical bank and sovereign creditors who observe signals xni , i ∈ {b, g},
and believe that all other bank creditors are using the threshold strategy around x̂b and
all other sovereign creditors are using the threshold strategy around x̂g.

For the typical bank creditor with signal xnb , the expected payoff difference between
rolling over and foreclosing is given by

πb (
x̂b, x̂g, xnb

)≡ Db

2εb

∫ xnb+εb

θ̂b(x̂b)
du+ `

2εb

∫ θ̂b(x̂b)

xnb−εb

(
1
σg

∫ σ̃g

θ̂g(x̂g,x̂b,u)
dv

)
du − 1, (6)

where the second summand is the payment from the guarantee ` multiplied by the prob-
ability that the bank creditor attaches to the survival of the government. For the sake of
notational compactness, we have used σg := (θ0

g +2ηg) and σ̃g := θ0
g +ηg.

The expected payoff difference between rolling over and foreclosing for a typical sovereign
creditor with signal xng is given by

πg (
x̂g, x̂b, xng

)≡ Dg

σb

∫ σ̃b

−ηb

(
1

2εg

∫ xng+εg

θ̂g(x̂g,x̂b,u)
dv

)
du − Cg, (7)

with σb := (θ0
b + 2ηb) and σ̃b := θ0

b + ηb. By using the piecewise definition of θ̂g from
equation 5, we can rewrite the double integral in equation (7) as

(x̂g +2εg)
1+2εg

− `Nb

(1+2εg)σb

∫ θ̂b

−ηb

∫ θ̂b+εb

x̂b

1
2εb

du.
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Note further that no guarantee payments come due in case all bank creditors withdraw
because they all receive receive signals xnb < x̂b. Since, by virtue of the uniform distribu-
tion, the signals lie in the interval [θb −εb,θb +εb], essentially all bank creditors receive
signals below x̂b and withdraw for realizations θb < x̂b −εb. This implies that the inner
integral in the last equation becomes zero for all θb < x̂b −εb. Utilizing this fact, we can
finally write the payoff difference between rolling over and withdrawing for a sovereign
creditor as

πg (
x̂g, x̂b, xng

)= Dg(x̂g +2εg)
1+2εg

− Dg`Nb

(1+2εg)σb

∫ θ̂b

x̂b−εb

u+εb − x̂b

2εb
du−Cg. (8)

4.4. Symmetric threshold equilibrium
A symmetric threshold strategy for bank creditors, given the symmetric threshold

strategy x̂g of sovereign creditors is defined as the signal x̂b such that

πb (
x̂b, x̂g, x̂b

)≡ π̄b(x̂b, x̂g)= 0, (9)

and πb(·)≷ 0 if and only if xnb ≷ x̂b.
Similarly, a symmetric threshold strategy for sovereign creditors, given the symmetric
strategy of bank creditors around x̂b, is defined by the signal x̂g such that

πg (
x̂g, x̂b, x̂g

)≡ π̄g(x̂g, x̂b)= 0. (10)

and πg(·)≷ 0 if and only if xng ≷ x̂g.
The following Lemma characterizes the two threshold strategies.

Lemma 1. There exist unique solutions x̂b = fb(x̂g) and x̂g = fg(x̂b) to Equations (9) and
(10) respectively.

Proof. See Appendix.

The properties of the two solutions are summarized in the following Lemma.

Lemma 2. The function fb(x̂g) is strictly increasing, while the function fg(x̂b) is strictly
decreasing.

Proof. See Appendix.

The equilibrium of the model is given by the intersection of the two curves fb and fg,
the intersection point constitutes the simultaneous solution to Equations (9) and (10)

Proposition 3. There exists a unique tuple of threshold signals (x̂∗b , x̂∗g) that satisfies
x̂∗b = fb(x̂∗g) and x̂∗g = fg(x̂∗b).

Proof. See Appendix.

Figure 7 illustrates the equilibrium. That fb is strictly increasing over the entire
range of x̂g means that sovereign creditors’ actions are strategic complements for bank
creditors. Indeed, if sovereign creditors increase their critical signal, the risk of a govern-
ment default increases and the likelihood that the guarantee will be paid out decreases.
In response, bank creditors increase their critical signal as well. In contrast, fg is strictly
decreasing over the entire range of x̂b, which implies that bank creditors’ actions are
strategic substitutes for sovereign creditors. This deserves some comment. We show in
the proof of Lemma 2 that
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x̂g

x̂b
x̂∗b−εb

−εg

x̂∗g

fb(x̂g)

fg(x̂b)

Figure 7: Best reply curves fb and fg. The joint equilibrium in the roll over games occurs at the intersection
point (x̂∗b , x̂∗g).

dx̂g

dx̂b
= f ′g(x̂b)∝ d

dx̂b

(∫ θ̂b(x̂b)

x̂b−εb

(u+εb − x̂b)du

)
.

Suppose that bank creditors increase their critical signal x̂b. This exerts two opposing
effects on sovereign creditors’ payoff and thus on their critical signal x̂g. Firstly, a higher
x̂b increases θ̂b and therefore the range of θb–realizations where the bank may default
and the guarantee comes due enlarges. This in turn decreases sovereign creditors’ ex-
pected payoffs from rolling over and leads them to increase their critical signal as well.
From the expression above, this effect is, up to a factor of proportionality, given by

(θ̂b +εb − x̂b)
∂θ̂b

∂x̂b

But there exists a second, opposing effect. As x̂b is larger, fewer bank creditors mis-
takenly rollover their debt whenever the bank fails and consequently the government’s
liabilities due to the guarantee payout are lower. This is true for all states θb < θ̂b. In
turn, the likelihood that the government survives rises and a typical sovereign creditor’s
expected payoff from rolling over increases. Formally, this effect is proportional to

−(θ̂b +εb − x̂b).

But the second effect outweighs the first one as long as εb > 0 since

∂θ̂b

∂x̂b
= Nb

Nb +2εb
< 1.
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4.5. Comparative statics
We are now analyzing the comparative statics properties of the critical signals with

respect to parameters {`, Nb,θ0
b,θ0

g}. Firstly, consider the effect of a marginal increase
in the guarantee `, depicted in Figure 8. An increase in the guarantee shifts the fb–
curve to the left since, for any given x̂g, a higher guarantee increases bank creditors
expected payoff from rolling over and therefore leads them to lower their critical signal.
The fg–curve is shifted to the right because, for any given x̂b, a higher guarantee promise
lowers the probability that the government survives and, in response, sovereign creditors
raise their critical signal. The increase in the guarantee thereby exerts a direct effect on
payoffs of both types of creditors as well as an indirect effect through the change in the
other type of creditors’ critical signal. For sovereign creditors both effects work in the
same direction, thus producing a clear-cut total effect. For bank creditors, the increase
in the critical signal of sovereign creditors lowers expected payoffs and therefore works
against the positive effect of the higher guarantee. Yet, if sovereign creditors’ signal is not
raised too much, and the shift in the fg–curve is sufficiently small compared to the shift
in the fb–curve, then a marginally higher guarantee decreases bank creditors’ critical
signal. The following Lemma provides a necessary and sufficient condition for this to
hold.

Lemma 3. A marginal increase in the guarantee lowers bank creditors’ critical signals,
i.e. dx̂b

d` < 0, if and only if

σ̃g − θ̂∗g(θ̂∗b )> `Nb

σb

∫ θ̂∗b

x̂∗b−εb

u+εb − x̂∗b
2εb

du. (11)

Proof. See proof of Lemma A13 in the Appendix.

The right–hand side of condition (11) is the ex ante expected guarantee payout. The
condition then says that bank creditors increase their critical signal if only if the ex ante
expected guarantee payout is no larger than the bound on the left–hand side which is
negatively dependent on the default point of the government and positively dependent
on the upper bound of the government’s liquidity distribution. Equation (11) can thus
be interpreted as a “credibility condition”. If it fails to hold, bank creditors may ex ante
judge government’s resources to be insufficient to cover guarantee promises and their
response to a an increase in the guarantee is to raise their critical signal. Note further
that the condition always holds for ` = 0, which implies that upon introduction of the
guarantee, bank creditors’ critical signal is always lowered.

Secondly, consider the effect of an increase in the bank’s exposure to funding illiquid-
ity, which is measured by the mass of bank creditors Nb. This is depicted in Figure 9. As
a higher degree of funding illiquidity is associated with a higher probability of bank fail-
ure and with larger expected guarantee payments, an increase in Nb shifts both curves
to the right. This leads to a higher critical signal of bank creditors. From the graphical
analysis alone, the sign of the effect on sovereign creditors’ signal is not clear-cut. One
the one hand, a larger Nb increases the expected liabilities from the guarantee (for any
given ` and x̂b) and leads government creditors to increase their critical signal. How-
ever, the strategic substitutability implies that a higher critical signal of bank creditors
makes sovereign creditors more willing to roll over, thereby inducing them to lower the
critical signal. However, we show in the Appendix that the latter effect is smaller than
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x̂g

x̂b
x̂∗b(`)

x̂∗g(`)

fb(x̂g,`)

fg(x̂b,`)

x̂∗g(`′)

x̂∗b(`′)

fb(x̂g,`′)

fg(x̂b,`′)

Figure 8: Change in critical signals due to an increase in the guarantee from ` to `′, given that condition
(11) holds.

the former, implying that a larger Nb always leads to an increase in sovereign creditors’
signal.11

x̂g

x̂b
x̂∗b(Nb)

x̂∗g(Nb)

fb(x̂g, Nb)

fg(x̂b, Nb)

x̂∗g(N ′
b)

x̂∗b(N ′
b)

fb(x̂g, N ′
b)

fg(x̂b, N ′
b)

Figure 9: Change in critical signals due to an increase in funding illiquidity from Nb to N ′
b.

Finally, we turn to the effects of increases in the parameters governing ex ante ex-
pected liquidity, θ0

b and θ0
g. The corresponding diagrams are shown in figures 10 and

11 respectively. An increase in θ0
b leaves the fb–curve unaffected and shifts fg to the

11Lemma A13 in the Appendix provides the formal details.
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left, implying lower critical signals for both, bank and sovereign creditors. θ0
b does not

affect the fb–curve directly, because bank creditors base their decisions on their updated
information about θb after observing signal xnb , which is independent of θ0

b. However,
as sovereign creditors do not receive further information about θb, their critical signal
depends on θ0

b. Since a higher θ0
b raises the probability that the bank survives and low-

ers the government’s expected payments due to the guarantee promise. This in turn
increases sovereign creditors’ expected payoffs from rolling over and makes them lower
their critical signal. By strategic complementarities, the lower x̂g leads to a lower x̂b.
However, an increase in θ0

g leads to a qualitatively different result. For a similar reason
as discussed above, θ0

g affects only bank creditors’ expected payoffs and leaves sovereign
creditors’ expected payoffs unaffected. An increase in θ0

g then increases the likelihood
that the government manages to roll over its debt and therefore it increases the proba-
bility that the guarantee can be paid out. This leads bank creditors to lower their critical
signal. But now, since bank creditors’ actions are strategic substitutes for sovereign cred-
itors, their critical signal will be increased.

These results suggest that whenever bank and sovereign are connected through the
guarantee promise, a positive spill-over effect exists from the bank’s liquid resources to
the likelihood that the government manages its debt roll over and survives. Similarly,
an improvement in the government’s ex ante liquidity also spills over to the likelihood
that the bank survives. Yet, this comes at the cost of a higher critical signal of sovereign
creditors which, in turn, may jeopardize the beneficial effect of the improved θ0

g on the
government’s likelihood of managing the debt roll over.

x̂g

x̂b

x̂∗g(θ0
b)

fb(x̂g)

fg(x̂b,θ0
b)

x̂∗g(θ0′
b )

fg(x̂b,θ0′
b )

Figure 10: Change in critical signals due an increase in bank’s ex ante expected liquidity from θ0
b/2 to θ0′

b /2.

5. The optimal guarantee and its properties

In this section we determine the optimal guarantee based on a stylized measure for
expected costs of crises. Moreover, we discuss how the guarantee affects the probabilities
of sovereign default, bank default, and dual default (a systemic crisis).
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x̂g

x̂b
x̂∗b(θ0

g)

fb(x̂g,θ0
g)

fg(x̂b)

x̂∗b(θ0′
g )

fb(x̂g,θ0′
g )

Figure 11: Change in critical signals due an increase in government’s ex ante expected liquidity from θ0
g/2

to θ0′
g /2.

5.1. A measure for expected costs of crises
When setting the guarantee ex ante, the government faces a trade-off between lower-

ing the expected costs of bank default on the one hand, while on the other hand, placing
additional strains on its own budget and thus raising the likelihood that it enters into
default itself. We formalize this trade-off by defining a measure for the expected costs of
crises which the government minimizes by setting the guarantee `.

We denote the cost of a pure bank default (a bank default, when the government sur-
vives) by φb, the cost of a pure government default (given that the bank survives) by φg
and the costs of a systemic crisis, i.e. a crisis where both, government and bank default,
by φs. We normalize these costs by setting φs ≡ 1. We interpret the costs as the loss in
the economy’s output that materializes once the respective crises occur. In particular, φb
results from a disruption in financial intermediation and the reduction in available bank
credit in the aftermath of default. Banks make considerable investments into screening
and monitoring technologies, and into the build-up of long-term relationships with bor-
rowers (Leland and Pyle (1977)). In case the bank defaults, these investments are lost
and have to be acquired anew, which involves costs for the economy as a whole. Moreover,
due to the specificity of this information, some of the bank’s borrowers cannot easily find
a new bank and may become credit constrained. Such constraints may be binding for
households and smaller enterprizes who otherwise face high costs when trying to borrow
on financial markets and therefore depend to a much larger degree on financial interme-
diation via the banking sector (Allen and Gale (2001)).

φg is the foregone output due to a sovereign default. The default may impose reputa-
tion costs on the government, implying higher borrowing costs in the future or even a full
exclusion from financial markets (Eaton and Gersovitz (1981)). A government default
may also exert a negative effect on trade through either sanctions and retaliations, or
through reduced access to trade credit. Moreover, empirically, sovereign default is also
associated with an immediate effect on economic growth in the default period (Boren-
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sztein and Panizza (2009)).
The government’s objective is then to

min
{`∈[0,1]}

K(`)=φg
(
Pg(`)− q(`)

)+φb (Pb(`)− q(`))+ q(`), (12)

where Pg(`) denotes the probability that the government defaults, Pb(`) stands for the
probability that the bank defaults and q(`) is the probability of a systemic crisis.12

We compare the expected costs under the optimally chosen guarantee, denoted by
K opt ≡ K(`opt), to two different benchmarks. The first benchmark is the first-best out-
come that occurs in the absence of any coordination problems on the side of sovereign
and bank creditors. Without coordination failures, the government and the bank default
if and only if θi < 0. As the fundamentals are uniformly distributed, the first-best bench-
mark can be calculated as

KFB =φg
ηg

σg
+φb

ηb

σb
+ (1−φg −φb)

ηb

σb

ηg

σg
. (13)

While KFB provides a floor to the expected costs, the second benchmark is the ceiling,
given by

K0 ≡ K(0)= KFB+φg
Cg/Dg

σg
+φb

1/Db

σb
+ (1−φg−φb)

(Cg/Dg +ηg)(1/Db +ηb)−ηgηb

σgσb
, (14)

when no guarantee is issued and coordination failures are present in both, the banking
and the sovereign game.

5.2. Probabilities of crises
We write the equilibrium critical signals as (x̂∗b(`), x̂∗g(`)) in order to emphasize their

dependency on the guarantee `. The default points of government and bank are then
written as θ̂∗b (`)≡ θ̂b(x̂∗b(`)) and θ̂∗g(`,θb)≡ θ̂g(x̂∗g(`), x̂∗b(`),θb).

The probabilities in the cost function K(`) are then given by

Pb(`)≡Pr
(
θb < θ̂∗b (`)

)
and Pg(`)≡Pr

(
θg < θ̂∗g(`)

)
,

and
q(`)≡Pr

(
{θb < θ̂∗b (`)}∩ {θg < θ̂∗g(`)}

)
.

Moreover, the probability that at least one crisis occurs is given by

Q(`)≡Pr
(
{θb < θ̂∗b (`)}∪ {θg < θ̂∗g(`)}

)
.

With respect to the likelihood of a bank default, the guarantee exerts its impact on
θ̂∗b only through the critical signal x̂∗b . The effect of the guarantee corresponds to a level
shift in the critical value θ̂∗b . This can be seen by writing explicitly

Pb(`) = 1
σb

∫ θ̂∗b (`)

−ηb

du =
Nb(x̂∗b (`)+εb)

Nb+2εb
+ηb

σb
. (15)

The impact on the probability of a government crisis, however, runs through two chan-
nels. Firstly, there is the effect on the critical signal x̂∗g, which induces a level-shift in the

12Explicit expression of these probabilities are provided in the subsequent section.
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default point θ̂∗g. This effect is of similar nature as the effect on the bank’s default point
θ∗b . Secondly, the government’s default point depends directly on the payments due to the
guarantee. Since these payments vary with the bank’s liquidity θb, the ex ante probabil-
ity of a government default depends on the expected payments to bank creditors due to
the guarantee. And despite θb and θg being independently distributed due to Assumption
1, calculation of the government’s default probability requires to integrate over θg and θb.
Besides the level shift, the guarantee thereby induces a functional dependency between
the likelihood of a government default and the bank’s liquidity. Formally expressed,

Pg(`) = 1
σb

∫ θ̂∗b (`)

−ηb

(
1
σg

∫ θ̂∗g(`,u)

−ηg

dv

)
du + 1

σb

∫ σ̃b

θ̂∗b (`)
du × 1

σg

∫ θ̂∗g(`)

−ηg

dv

=
x̂∗g(`)+εg

1+2εg
+ηg

σg
+ 1

σbσg

`Nb2εg

(1+2εg)

∫ θ̂∗b (`)

x̂∗b−εb

u+εb − x̂∗b(`)

2εb
du, (16)

where the last term in the second line makes clear the functional dependency between
the government’s default probability and the bank’s fundamental. It illustrates starkly
that the government’s fate does not exclusively lie in the hand of its own creditors but,
through the guarantee, becomes closely tied to that of the bank, even though the liquidity
resources that otherwise govern individual default probabilities are fully independent.

In much the same way, the probability of a systemic crisis can be calculated as,

q(`)= 1
σb

∫ θ̂∗b (`)

−ηb

(
1
σg

∫ θ̂∗g(`,u)

−ηg

dv

)
du

=
x̂∗g(`)+εg

1+2εg
+ηg

σg
×

Nb(x̂∗b (`)+εb)
Nb+2εb

+ηb

σb
+ 1

σbσg

`Nb2εg

(1+2εg)

∫ θ̂∗b (`)

x̂∗b−εb

u+εb − x̂∗b(`)

2εb
du, (17)

θb

θ̂b(`= 0)

θ̂g(`= 0)

θ̂b(`)

θ̂b(`,θb)

government default

θg

government default

government survival

government survival

bank default

bank survival

bank default
bank survival

Figure 12: Regions of bank and / or sovereign default in θb–θg–space.
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Figure 12 illustrates the impact of the guarantee on the default points θ̂∗g and θ̂∗b .
The guarantee decreases x̂∗b and increases x̂∗g. The dotted lines separate the regions of
default and no default in the absence of the guarantee. The introduction of guarantee
` shifts the bank’s default point to the left (dashed line) and enlarges the region where
the bank survives. Moreover, it increases the sovereign creditors’ critical signal and the
dotted horizontal line moves up to become the solid line. In the region where the bank
defaults (to the left of the dashed line), the government’s default point is a function of θb
and therefore the solid line slopes upwards.

5.3. The influence of transparency on the optimal guarantee
The influence of the guarantee in reducing the likelihood of bank default depends on

how ‘credible’ the guarantee is, which in turn is determined by the risk of sovereign de-
fault. The pertinent question is then whether and to what degree a particular guarantee
promise itself undermines the guarantee’s credibility by putting additional strains on the
government’s refinancing situation and increasing its likelihood of default. We explained
in Section 3.6 that the eventual costs of a guarantee promise are crucially dependent on
the degree of balance sheet transparency. To better understand the intuition behind the
effects of changes in the degrees of balance sheet transparency, εb and εg, on the optimal
policy in the numerical analysis in Section 6 below, we provide a brief digression on two
border cases where either one degree of fundamental uncertainty vanishes.

5.3.1. Case of fully transparent bank.
With a high degree of balance sheet transparency and εb becoming negligibly small,

bank creditors face only strategic uncertainty about the behavior of other bank creditors.
The resulting coordination failure can be mitigated by the guarantee at zero cost for the
government.13 Reiterating the logic from Section 3.6: With εb = 0, all bank creditors
receive exactly the same signal. Either all run, in which case the bank fails and no
payout due to the guarantee promise have to be made; or, all roll over, the bank survives
and the guarantee is not used. Consequentially, the prevailing strategic uncertainty can
be reduced by a sufficiently large guarantee promise at zero cost for the government.

The critical thresholds for vanishing εb are provided in the following lemma.

Lemma 4. Whenever the bank is fully transparent, εb → 0, independent of the degree of
transparency of the government, εg ≥ 0, the default points of bank and government are
given by

θ̂∗b (`)= Nb
(
1−`(1−Pg)

)
Db −`(1−Pg)

and θ̂∗g =
Cg

Dg
,

where Pg := Cg/Dg+ηg
σg

.

Proof. See Appendix.

While sovereign default risk influences the critical threshold θ∗b , the guarantee does
not put any additional strains on the government and its threshold converges to the
one in the canonical model. This implies that there is a clear-cut negative effect of the
guarantee on the costs of crises K(`). The government’s program has its solution at a
corner.

13This is basically the result obtained by Bebchuk and Goldstein (2010).
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Lemma 5. If the bank is fully transparent, εb → 0, the first-order necessary condition of
the government’s program is given by

K ′(`)=−Nb

σb

(1−Pg)(Db −Cb)
(Db −`(1−Pg))2

(
(1−Pg)φb +Pg

(
1−φg

))< 0, (18)

where Pg := Cg/Dg+ηg
σg

.

Proof. See Appendix.

Equation (18) implies that under a regime of high transparency in the banking sector,
it becomes optimal for the government to provide the maximal possible guarantee, which
corresponds to a 100%–coverage of bank creditors’ unit claims. However, while by setting
` = 1 the government shrinks the range of fundamentals where inefficient bank runs
can occur, it does not completely remove the possibility of inefficient bank failures. As
the government itself defaults with probability Pg, ` = 1 is not high enough to achieve
θ̂b(1)= 0. To accomplish this, the government would need to set

`= 1
1 − Pg

> 1, (19)

in order to remove inefficient bank failures. Yet, this would amount to paying a subsidy
to bank creditors in case the guarantee falls due.

5.3.2. Case of fully transparent government and intransparent bank.
Transparency of the government plays an entirely different role. εg has no decisive

influence on whether the guarantee creates an actual cost or not. Yet, as can be seen from
Equation (16), if εg vanishes, the functional dependency between the government’s like-
lihood of default and the bank’s liquidity disappears, which in turn lowers the magnitude
of the guarantee’s effect on the government’s critical threshold.

Lemma 6. Whenever the government is fully transparent, εg → 0, and the bank is in-
transparent, εb > 0, the default points of bank and government take the form

θ̂∗b (`)= Nb(x̂∗b(`)+εb)

Nb +2εb
and θ̂∗g(`)= x̂∗g(`).

Proof. See Appendix.

The different effects of bank and government balance sheet transparency can also be
seen from the change in the optimal policy. The policy outlined in Lemma 5 may change
when the bank is intransparent, albeit the government is fully transparent.

Lemma 7. If the government is fully transparent, εg → 0, and the bank is intransparent,
εb > 0, then the first-order necessary condition of the government’s program is given by

K ′(`)= 1
σb

(
φb(1−Pg(`))+ (1−φg)Pg(`)

) Nb

Nb +2εb

∂x̂∗b(`)

∂`

+ 1
σg

(
φg(1−Pb(`))+ (1−φb)Pb(`)

) ∂x̂∗g(`)

∂`
, (20)

with Pg(`) := x̂∗g(`)+ηg
σg

and Pb(`) := Nb(x̂∗b (`)+εb+ηb)+2εbηb
σb(Nb+2εb) .
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Proof. See Appendix.

Comparing equations (18) and (20), the coefficient of ∂x̂∗b /∂` in equation (20) is the
equivalent to the second factor in equation (18). There is, however, a second term in
equation (20), which does not have a counterpart in equation (18) since, by virtue of the
highly transparent bank, the probability Pg did not change with `. The sign of K ′(`) in
(20) may therefore be different. The guarantee may not only lower the bank creditors’
critical signal but it now increases the sovereign creditors’ critical signal. Whether there
will be a corner solution (at the upper or the lower bound of the support of `) or an
interior solution depends crucially on the remaining parameters governing the model
and essentially on whether these render the critical signals increasing or decreasing in
`.

6. Numerical analysis

Although the government’s minimization problem is conceptually very simple, tractable
analytical solutions are not available and we must resort to a numerical analysis to deter-
mine the optimal guarantee and examine its dependence on the degrees of transparency
and the parameters governing the liquidity situations of government and bank.

Our numerical analysis consists of two parts. First, we investigate how the optimal
guarantee depends on the exogenous cost parameters φb and φg. Specifically, for combi-
nations of (φb,φg) ∈ C = {

φb,φg
∣∣φb +φg ≤ 1

}
, we determine whether the optimal policy

is (i) to have no guarantee, `opt = 0, (ii) to set the guarantee at it’s maximum value,
`opt = 1, or (iii) at an interior value ` ∈ (0,1). We show this diagrammatically by dividing
the space C into distinct regions where the different optimal policies are found. Using
the diagrams, we investigate how the areas occupied by the different policies change as
the other exogenous model parameters, Nb,εb and εg are varied. Secondly, in Section 6.2,
we pick specific values for (φb,φg) and we investigate how the optimal guarantee, welfare
gain and probabilities of crises vary with the degrees of transparency.

6.1. Properties of the optimal guarantee
Table 5 lists the benchmark parametrization for the exogenous parameters. Since the

global game requires the existence of dominance regions, we have to ensure that for all
values under consideration, Nb+2εb ≤ θ0

b+ηb and ηb ≥ 2εb, which we guarantee by taking
ηb = 3.01 and θ0

b = 3. Similarly, the dominance regions in the sovereign game require
`Nb +1+2εg ≤ θ0

g +ηg and ηg > 2εg. We therefore set ηg = 0.51 and θ0
g = 4. Assuming

that bank claims are more liquid than claims on the government, we set Cg = 0.9 and
Cb = 1. Moreover, we suppose that government claims pay a higher interest rate than
bank claims and therefore set Db = 1.5 and Dg = 1.75.14 We then vary parameters εg, εb,
and Nb throughout the different treatments.

14Our choices of payoff parameters amount to a rate a return for bank and sovereign creditors of 50%
and 83.33%, respectively. At the time Lehman Brothers collapses in September 2008, the LIBOR-OIS rate,
which is an industry benchmark for interbank lending rates, was more than 40 times that of rates at the
start of the year. Thus a rate of return of 50% may be expected during crises periods. Similarly, prior to
default, spreads on Irish government debt rose to over 200 basis points relative to the German Bund. Thus
our estimate of an 83.33% return, while extreme, is plausible.
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Parameter Numerical Value
ηb 3.01
ηg 0.51
Db 1.5
Dg 1.75
Cb 1
Cg 0.9

Table 5: Parameterization

6.1.1. Benchmark case
We begin our analysis by studying a benchmark case with high transparency of bank

and government, εb = εg = 0.025 and the bank’s degree of funding illiquidity set at Nb = 1.
With high transparency, there are few bank creditors who rollover their loans when

the bank fails. Consequently, the total guarantee payout is negligibly small and does not
place an adverse burden on the government’s finances. As such, the sovereign creditors
rollover their loans, leading to the government’s continued solvency. Thus, the govern-
ment can credibly set the guarantee at its maximum value. We can readily glean this
result from the Figure (), where for all combinations of φb and φg the optimal policy is to
have the maximum guarantee.

6.1.2. Impact of transparency
Next, we investigate how changes in bank transparency influence the optimal guar-

antee. As εb increases, the fraction of bank creditors who get signals above x̂∗b despite
θb < θ̂∗b becomes larger. If the bank were to now fail, the guarantee payout due would be
larger, thus placing a burden on the government’s finances. This leads to an increasing
fraction of sovereign creditors foreclosing on their loans. Consequently, in equilibrium,
the government’s ability to credibly provide the maximum guarantee is diminished. We
see this from the panels in Figure ??, where on increasing εb, the areas where the optimal
policy is to have no guarantee or an interior solution increase.

Decreases in the government’s degree of transparency has a similar, albeit nuanced
impact. As εg increases, there are more sovereign creditors with disparate signals. Specif-
ically, there are more creditors who believe that the government’s fundamentals are weak
and decide to withdraw their loans. The government’s credibility to provide the maximal
guarantee is diminished. From Figure 13 we note that as εg increases, the area where
the optimal policy is to provide the maximum guarantee is reduced, while that for the
interior solution increases. However, the area for having no guarantee remains almost
unchanged.

6.1.3. Impact of funding illiquidity
The size of the pool of bank creditors is governed by Nb. When Nb is large, the bank’s

funding illiquidity, is exacerbated. From an ex ante point of view, an increase in Nb
for a given θ0

b implies that the bank has to cover a larger number of maturing claims
with given expected resources. Its liquidity mismatch becomes larger and the expected
guarantee payout increases. The larger payment places additional strains on the gov-
ernment’s resources, thus making it more likely that sovereign creditors will withdraw
their loans, leading to the sovereign’s default. Under these circumstances, the govern-
ment becomes less able to credibly provide the maximum guarantee. As suggested, these
effects are more pronounced when εb is large, which is demonstrated in Figure 14. As
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Figure 13: Optimal guarantee in space C . Mass of bank creditors set to Nb = 1.
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Panel 4: εg = 0.25, εb = 0.5.
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Panel 5: εg = 0.25, εb = 1.0.
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Panel 6: εg = 0.25, εb = 1.5.

Nb increases, the region where an interior solution is the optimal response widens, while
the regions for no guarantee and maximal guarantee are almost unaffected and decrease,
respectively.

Figure 14: Optimal guarantee in space C . Degree of government transparency set to εg = 0.025.
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Panel 3: N = 1, εb = 1.5.
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Panel 4: N = 3, εb = 0.5.
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Panel 6: N = 2, εb = 1.5.

6.1.4. Impact of increased expected liquidity
In the previous exercises, the parameters governing ex ante expected liquidity, θ0

b and
θ0

g, were fixed. To conclude this section, we finally investigate how variations in these
parameters affect the optimal guarantee. θ0

b increases the expected liquid resources of
the bank. As was shown in Section 4.5, this decreases the critical signals of both types
of creditors. Moreover, a higher θ0

b also decreases the ex ante probability of bank default
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directly (see equation (??)). The likelihood of a guarantee payout diminishes and, as
Figure ?? shows, the region where the maximal guarantee is optimal increases, while the
region for no guarantee decreases.

As explained in Section 4.5, an increase in θ0
g decreases the critical signal of bank

creditors, but it increases the critical signal of sovereign creditors. Thereby, the probabil-
ity that the bank defaults decreases, while the probability that the government defaults
increases. However, an increase in θ0

g affects the probabilities not only through its impact
on the critical signals, but it also decreases the likelihood of sovereign default directly
through its change in the support of the θg (see equation (16)). For our parametriza-
tion of the model, the effect on the sovereign creditors’ critical signal is dominated by
the other two effects. Figure 15 demonstrates that, as θ0

g increases, the regions where
the government’s optimal policy is to provide the maximal guarantee increases, and the
region where no guarantee is optimal decreases.

Figure 15: Optimal guarantee in space C . Mass of bank creditors set to Nb = 1 and degree of government
transparency set to εg = 0.25.
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g = 2.0, θ0

b = 3.0.
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Panel 4: θ0
g = 3.0, θ0

b = 0.0.
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g = 3.0, θ0
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g = 4.0, θ0
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g = 4.0, θ0

b = 3.0.

6.2. ...
In this section we focus on empirically plausible pairs of costs (φb,φg) and consider

the impact of changes in the degree degrees of transparency εb and εg. In principle, the
degrees of transparency may as well be influenced by authorities and regulatory bod-
ies. The Basel Committee on Banking Supervision in their progress report on resolution
policies and frameworks notes that several countries, while strengthening safety nets for
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banks are also mandating for greater disclosure of balance sheet information to the pub-
lic.15 To better understand the implications of transparency for the optimal guarantee,
and to determine its possible welfare gains, we resort to numerical experiments where
the broad brushed parametrization is drawn from the recent Irish banking and sovereign
debt crisis.

6.2.1. Parametrization
According to IMF (2011), the gross debt of Irish financial institutions totaled 664%

of Irish GDP in 2011. Moreover, the refinancing needs of the Irish banks amounted to
25% of their total liabilities. This roughly equates to the Irish banks having to obtain
funding in the order of 166% of GDP. In contrast, the Irish government faced financing
needs of only 19.5% of GDP in 2011. This implies that the amount of maturing claims of
Irish banks was approximately 8.5 times that of the Irish government, implying Nb = 8.5,
where we continue to maintain our normalization of Ng = 1.

To further ensure that the dominance regions of the two games are well-defined, we
now take ηb = 5.6, ηg = 0.51, θ0

b = 6 and θ0
g = 9.5. Consequently, the banking sector faces a

considerable ex ante rollover problem, with expected liquidity being only around 35% of
maturing claims. The government, in contrast, has expected liquidity almost five times
that of its own maturing claims. The remaining payoff parameters are kept unchanged
compared to the previous section.

Cost parameters φb and φg are interpreted as, respectively, the output losses due to
a solo bank or sovereign crisis relative to the loss due to a dual crisis. Table 6 provides a
brief overview over available empirical estimates of such losses. It can be seen that the
output costs of a sovereign default ex banking crisis are around 10% (when no currency
crisis occurs at the same time) up to around 50% (when also a currency crisis occurs) of
GDP. The output losses due to a solo banking crisis are in the range of around 6% to 25%
while the costs of a dual crisis are around 54% of GDP. For the exercises in this section we
set (φb,φg) to (0.05,0.3), corresponding to output losses of a pure bank default of around
2.7% and costs of a pure sovereign crisis of around 16% of GDP, and alternatively to
(0.1,0.2), implying costs of 5% and 10% of GDP respectively.

Source Type of crisis Duration Output loss
Hoggarth et al. (2002) Banking 3.2 6.3% (c)

Twin (Banking and Currency) 4.2 29.9% (c)
Honohan and Klingebiel (2000) Banking 3.5 12.5% (c)

Hutchison and Noy (2005) Banking 3.3 10% (c)
Twin (Banking and Currency) 3-4 13%-18% (c)

De Paoli et al. (2009) Sovereign 4 2.5%
Twin (Sovereign and Banking) 11 4.9%
Twin (Sovereign and Currency) 8.1 6.2%

Triple 12.5 17.1%
John H. Boyd (2005) Banking 5.1 5.4%

Table 6: Costs of different types of crises. Output loss in percent of annual GDP or cumulated (c). Reported
values are either average losses reported in the respective studies or indicate the range of losses found in
these studies.

15See Basel Committee on Banking Supervision (2011).
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In what follows, we measure the welfare gain (in percentage points of GDP) from
introducing the guarantee as

welfare= K0 −K opt.

Moreover, in order to assess the impact of the guarantee on the likelihood of crises, we
consider the differences

∆Pb ≡ Pb(`opt)−Pb(0) and ∆Pg ≡ Pg(`opt)−Pg(0),

as well as
∆Q ≡Q(`opt)−Q(0) and ∆q ≡ q(`opt)− q(0).

6.2.2. Results
Figure 16 shows a first set of comparative statics exercises with respect to εb where

φb = 0.05 and φg = 0.3. As the difference between the grey and the black line indicates,
a lower transparency of the government reduces the optimal guarantee and, as shown in
Panel 2, is associated with a sizeable welfare loss. A tenfold increase in εg reduces the
welfare gain by around 30%. However, the welfare effects are generally rather low. In our
numerical example the expected welfare gains are equivalent to at most 3% of GDP over
the course of the crisis. This is negligibly small, given the large output losses presented
in Table 6. Panels 3 to 6 show the probability differences ∆Q, ∆q, ∆Pb and ∆Pg. As one
would expect, the probability of a sovereign crisis rises. Moreover, it rises less than the
reduction in the probability of a banking crisis, which in turn explains why probabilities
q and Q are strongly decreasing. Higher bank balance sheet transparency is clearly
enhancing the effect of the guarantee on the different crisis probabilities. Similarly, a
less transparent government significantly dampens the effect of the guarantee on all
probabilities.

Figure 17 shows the numerical results when φb = 0.1 and φg = 0.2. An important
difference to the previous exercise is that a highly transparent government finds it now
optimal to provide a maximal guarantee independent of the degree of bank transparency.
Hence, even the though costs of a bank default are still below the costs of a sovereign
crisis, the significantly smaller impact of the guarantee on Pg allows the government to
provide full coverage of bank claims even if the bank is intransparent.

Finally, when the costs of a banking crisis exceed the costs of a sovereign crisis, the
optimal guarantee provides 100%–coverage independent of both degrees of transparency.
This can be seen from figure 6.2.2 where we have set φb = 0.2 and φg = 0.1. However, the
welfare effects associated with bank and sovereign transparency are still significant.

A robust finding throughout these numerical exercises is that the increase in the
government’s default probability is, in absolute magnitude, significantly smaller than
the reduction in the bank’s default probability. This replicates the empirical behavior
of CDS–spreads that we alluded to in the introduction (see Figure 4) and allows us to
put forward an interpretation of this stylized fact. Recall that in our model, under a
regime of full bank transparency, no guarantee payout will ever come due. This implies,
as can be seen from the corresponding panels in Figures 16 and 17, that the sovereign’s
default probability remains almost unchanged, whereas the impact on the bank’s default
probability is large. The guarantee removes strategic uncertainty, thereby serving as a
device to coordinate bank creditors on the efficient equilibrium. When the degree of bank
transparency becomes smaller, the mass of bank creditors who may eventually claim the
guarantee increases and, in case the bank defaults, the guarantee creates an actual cost
burden for the government. As a result, the government’s default probability begins to
increase. The large decrease in CDS spreads across countries, that was observed right
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Figure 16: Comparative statics of εb with φb = 0.05 and φg = 0.3
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Figure 17: Comparative statics of εb with φb = 0.1 and φg = 0.2
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Figure 18: Comparative statics of εb with φb = 0.2 and φg = 0.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Εb0.0

0.2

0.4

0.6

0.8

1.0

1.2
lOPT

Εg=0.25

Εg=0.025

Panel 1: Optimal guarantee

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Εb0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
welfare gain

à Εg=0.25

æ Εg=0.025

Panel 2: Welfare gain from introduction of guarantee, K0 −K opt

after the issuance of bank debt guarantees, may therefore mirror the removal of strategic
uncertainty among bank creditors. However, sovereign CDS–spreads increased at the
same time, which suggests that the corresponding banking sectors may not have operated
under a regime of full transparency. Market participants in sovereign funding markets
may have conjectured that the guarantees would create an actual cost for the sovereign
and therefore withdrew funding.

7. Conclusion

In this paper we have analyzed the effects of a bank debt guarantee provided by the
government and the role played by the degree of balance sheet transparency in mak-
ing the guarantee costly. To examine this phenomenon, we used a stylized global games
framework to address the following questions: (i) How does the introduction of a bank
liability guarantee by a government affect the behavior of banking and sovereign credi-
tors? (ii) How does the guarantee affect the likelihood of crises? (iii) What is the optimal
guarantee that trades-off the expected costs associated with the different types of crises?
and (iv) How do changes in the parameters governing fundamental uncertainty / trans-
parency and liquidity impact on the optimal guarantee?

As the guarantee promise increases the sovereign’s expected liabilities, sovereign
creditors may lend to the government less often, thereby increasing the government’s
own likelihood of default. This in turn can jeopardize the effectiveness of the guarantee
as bank creditors become less eager to rely on the guarantee when they expect that the
government becomes unable to fund its promises.

In our model, it turned out that equation (11) is a necessary and sufficient condition
for the guarantee to be effective in raising the incentives of bank creditors to roll over
their loans. Moreover, our model provides a theoretical foundation for the empirically
observed behavior of credit default spreads during the recent crisis across the different
countries that issued bank debt guarantees. By resorting to a stylized measure for the
expected costs of crises, we were able to characterize the optimal guarantee in the space of
relevant cost parameters as a function of the key parameters that reflect bank’s funding
illiquidity and the degrees of transparency of bank and sovereign creditors respectively.

Our results also show a clear cut welfare improvement with greater transparency,
which lowers fundamental uncertainty. This would suggest that in designing guarantee
schemes, authorities can improve on their credibility by mandating greater disclosure on
the part of the banks. These findings are in line with the new approaches being sought by
several countries, as discussed in the Basel Committee for Banking Supervision (2011)
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report. Moreover, by improving on the government’s own transparency, these gains can
be further enhanced.

While reduced form, the model captures key strategic interactions across sovereign
and bank creditors in the design of optimal guarantee schemes, that have previously been
assumed exogenous. Such cautionary tales equally apply to the design of new regulations,
where authorities focus on effects in partial, rather than general equilibrium models.
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Figure 1: 3m-Euribor-OIS spread in basis points. Source: authors’ calculation, data taken from Bloomberg.
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Figure 2: Change in CDS–spreads for banks and sovereigns between 1/1/2007 and 9/25/2008. Bank CDSs
are unweighted averages of banks with headquarter in respective country. Figure taken from Acharya
et al. (2011).
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Figure 4: Change in CDS–spreads for banks and sovereigns between 9/26/2008 and 10/21/2008. Bank CDSs
are unweighted averages of banks with headquarter in respective country. Figure taken from Acharya et al.
(2011).
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Figure 6: Net TARGET2 Liabilities of selected euro area national central banks against the Eurosystem
in millions of euro. Negative values reflect a Target2-liability, positive numbers a Target2-asset. Source:
University of Osnabrück, EconoCrisisMonitor
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Appendix

Proof of Proposition 1. Morris and Shin (2003) show that the model has a unique symmetric threshold
equilibrium where creditors use the strategy around x̂b and the bank defaults whenever θb < θ̂b. The
creditor who observes xnb = x̂b must therefore be indifferent between rolling over and foreclosing. Thus,
the expected payoff difference between rolling over and foreclosing is given by

DbPr
(
θb > θ̂b

∣∣ x̂b
)+`Pr

(
θb ≤ θ̂b

∣∣ x̂b
)−Cb = 0, (A21)

which, by using the assumed uniform distributions, can be written as

Db −Cb

Db −`
= 1

2εb

∫ θ̂b

x̂b−εb

du. (A22)

Due to the law of large numbers, λb(θb) = Pr
(
xnb ≤ x̂b

∣∣θb
) = ∫ x̂b

θb−εb
du

2εb
, and by utilizing the failure con-

dition,
1

2εb

∫ x̂b

θ̂b−εb

du = θ̂b

Nb
. (A23)

From Equation (A22),

1− Db −Cb

Db −`
= Cb −`

Db −`
= 1− 1

2εb

∫ θ̂b

x̂b−εb

du = 1
2εb

∫ x̂b

θ̂b−εb

du,

and combining the latter with Equation (A23) gives Equation (2) in the text,

Nb (Cb −`)
Db −`

= θ̂b.

Moreover, solving Equation (A23) for x̂b, gives Equation (1) in the text,

1
2εb

∫ x̂b

θ̂b−εb

du = x̂b − θ̂b +εb

2εb
= θ̂b

Nb
⇒ x̂b = θ̂b

(
1+ 2εb

Nb

)
−εb.

Proof of Proposition 2. Without loss of generality, we can concentrate on symmetric strategies in both
groups i ∈ {g,b}. We will show that for any symmetric strategy si : xni 7→ {0,1} played by group i, the only
equilibrium in the rollover game between agents of group j , i is a threshold equilibrium and that there are
no other equilibria in non-threshold strategies. As a corollary to this, the simultaneous equilibrium in the
game with a guarantee is an equilibrium where bank and government creditors play threshold strategies
and there are no other equilibria. The proof is simplified considerably due to Assumption 1, which, since it
implies that agents’ signals are completely uninformative about the fundamental in the other game, allows
us to treat the fundamental and the strategy in the respective other game as exogenously given. We begin
with the rollover game played by bank creditors. Denote the fraction of bank creditors who withdraw by
λb and suppose that government creditors play any symmetric strategy sg(xng ). Given the government’s

liquidity θg, we can then write the fraction of government creditors who withdraw as
∫ θg+εg
θg−εg

s(xng )dxng .
The payoff differential between rolling over and withdrawing for a typical bank creditor is then given by

πb(θb,λb,θg, sg(·))=


Db −Cb if λb < θb, ∀θg

`−Cb if λb > θb,
∫ θg+εg
θg−εg

sg(xng )dxng < θg − (1−λb)`

−Cb if λb > θb,
∫ θg+εg
θg−εg

sg(xng )dxng > θg − (1−λb)`

(A24)
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Lemma A8. Bank creditors’ payoff differential (A24) has the following properties.

1. Action single-crossing in λb: For any θb, there exists λ∗
b such that πb > 0 for any λb < λ∗ and πb < 0

for any λb >λ∗
b .

2. State monotonicity in θb: πb is non-decreasing in θb.

3. Laplacian State Monotonicity: There exists a unique θ∗b such that∫ 1

0
π(θ∗b ,λb,θg, sg(·))dλb = 0.

4. Uniform Limit Dominance: There exist θb and θb such that πb <−δ for θb < θb and πb > δ for θb > θb
for some δ> 0.

Moreover, the noise distribution satisfies

5. Monotone Likelihood Property.

6. Finite expectations of signals.

Proof of Lemma A8. 1. Note that Db −Cb > 0> `−Cb >−Cb. Action single-crossing then follows by
setting λ∗

b = θb.

2. Can be inferred immediately from Equation (A24).

3. We can write the integral
∫ 1

0 π(θb,λb,θg, sg(·))dλb as follows

(Db −Cb)
∫ θb

0
dλb − Cb

∫ min
{
1,1−`−1(

∫ θg+εg
θg−εg

sg(xng )dxng−θg)
}

θb

dλb

+ (`−Cb)
∫ 1

min
{
1,1−`−1(

∫ θg+εg
θg−εg

sg(xng )dxng−θg)
} dλb.

As the left hand side is negative for θb = 0, positive for θb = 1 and otherwise strictly increasing in
θb, there exists a unique θ∗b such that

∫ 1
0 π(θ∗b ,λb,θg, sg(·))dλb = 0.

4. The claim follows by setting θb = 0, θb = 1 and δ=min{Cb −`,Db −Cb}.

5. Uniform noise satisfies MLRP, see (Shao, 2003, p. 399).

6. This follows immediately from the assumption of a uniform distribution with bounded support.

Lemma A9. For any strategy sg(·) played by government creditors, the rollover game between bank creditors
has a unique threshold equilibrium.

Proof of Lemma A9. Since the payoff differential satisfies properties (1) to (6) in Lemma A8, the claim
follows from (Morris and Shin, 2003, Lemma 2.3).

Lemma A10. There are no other equilibria in non-threshold strategies.

Proof of Lemma A10. Since noise terms are uniformly distributed and the payoff differential satisfies
action single-crossing , the claim follows immediately from the proof to (Goldstein and Pauzner, 2005,
Theorem 1).

Next, we turn to the rollover game played by government creditors. Suppose that bank creditors play
any strategy sb(xnb ). Given any θb, we can then write the fraction of bank creditors who withdraw as∫ θb+εb
θb−εb

sb(xnb )dxnb . The payoff differential between rolling over and withdrawing for a typical government
creditor is then given by

πg(θg,λg,θb, sb(·))=


Dg −Cg if λg < θg,

∫ θb+εb
θb−εb

sb(xnb )dxnb < θb

Dg −Cg if λg < θg − (1−∫ θb+εb
θb−εb

sb(xnb )dxnb )`,
∫ θb+εb
θb−εb

sb(xnb )dxnb > θb

−Cg if λg > θg − (1−∫ θb+εb
θb−εb

sb(xnb )dxnb )`,
∫ θb+εb
θb−εb

sb(xnb )dxnb > θb

−Cg if λg > θg, ∀θb

(A25)
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Lemma A11. Government creditors’ payoff differential (A25) has the following properties.

1. Action monotonicity in λg: πg is non-increasing in λg.

2. State monotonicity in θg: πg is non-decreasing in θg.

3. Laplacian State Monotonicity: There exists a unique θ∗g such that∫ 1

0
π(θ∗g ,λg,θb, sb(·))dλg = 0.

4. Uniform Limit Dominance: There exist θg and θg such that πg <−δ for θg < θg and πg > δ for θg > θg
for some δ> 0.

Moreover, the noise distribution satisfies

5. Monotone Likelihood Property.

6. Finite expectations of signals.

Proof of Lemma A11. 1. Suppose θb >λb, then, since Dg −Cg >−Cg, πg is clearly non-increasing in
λg for any θg. Similarly for the case where θb <λb.

2. Suppose θb >λb, then πg is increasing in θg for any λg. Similarly for θb <λb.

3. If θb >λb, then θ∗g = Cg/Dg. If θb <λb, then θ∗g = Cg/Dg + (1−λb)`.

4. This follows by setting θg = 1+` and θg = 0 and δ= Dg −Cg.

5. Uniform noise satisfies MLRP, see (Shao, 2003, p. 399).

6. This follows immediately from the assumption of a uniform distribution with bounded support.

Lemma A12. For any strategy sb(·) played by bank creditors, the rollover game between government cred-
itors has a unique equilibrium in threshold strategies. Moreover, there are no equilibria in non-threshold
strategies.

Proof of Lemma A12. Since the payoff differential satisfies properties (1) to (6) in Lemma A11, the claim
follows immediately from (Morris and Shin, 2003, Proposition 2.2).

Proposition 2 follows since by Lemmas A9 and A10, bank creditors will respond to any strategy sg by
using a threshold strategy and since by Lemma A12, government creditors will respond to any strategy sb
by using a threshold strategy. Hence, the only equilibrium is a threshold equilibrium. This completes the
proof.

Proof of Lemma 1. Fix x̂g. Due to the existence of dominance regions there exist x̂b and x̂b such that
π̄b(x̂b, x̂g) < 0 for any x̂b < x̂b, and π̄b(x̂b, x̂g) > 0 for any x̂b > x̂b. Similarly, fix x̂b, then there exist x̂g and
x̂g such that π̄g(x̂g, x̂b) < 0 for any x̂g < x̂g, and π̄g(x̂g, x̂b) > 0 for any x̂g > x̂g. And since πb(·) and πg(·) are
continuous they both cross the x-axis at least once.

To show that the crossing points are indeed threshold equilibria, we must show that πi(·)> 0 if and only
if xni > x̂i and πi(·)< 0 if and only if xni < x̂i for i ∈ {b, g}. Fix the crossing point x̂i. Observe that increasing
(decreasing) xni above (below) x̂i increases (decreases) the part of the payoff differential that is multiplied
by D i (for i = b, it also decreases (increases) the part multiplied by `). Since for xni = x̂i, the positive and
the negative part of the payoff differential exactly offset each other, we can conclude that πi(·) > 0 if and
only if xni > x̂i and conversely for xni < x̂i (for i = b, this follows because Db > `). This establishes the
existence of at least one threshold equilibrium in each game.

In order to show that there is exactly one threshold equilibrium in each game, it suffices to show that
π̄b(x̂b, x̂g) is strictly increasing in x̂b and π̄g(x̂g, x̂b) is strictly increasing in x̂g.

From Equation (??) in the text follows

∂θ̂g

∂x̂g
= 1

1+2εg

for all θb. Hence,
∂π̄g(x̂g, x̂b)

∂x̂g
= Dg

1+2εg
> 0. (A26)
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Next, we turn to the derivative of π̄b(·) with respect to x̂b. Observe first that θ̂′b(x̂b) = Nb(Nb + 2εb)−1

and (1− θ̂′b(x̂b)) = 2εb(Nb +2εb)−1. Moreover, if θb < θ̂b, then ∂θ̂g/∂x̂b = −`Nbεg(εb(1+2εg))−1. Let θ̂T
g :=

(x̂g +εg)(1+2εg)−1, so that we can write θ̂g(x̂g, x̂b, θ̂b) = θ̂T
g + `Nb2εg

1+2εg

Nb−x̂b+εb
Nb+2εb

, while θ̂g(x̂g, x̂b, x̂b −εb) = θ̂T
g .

With these definitions in mind, we can write the derivative of π̄b(·) with respect to x̂b as follows

∂π̃b (
x̂b, x̂g

)
∂x̂b

= Db

2εb

(
1− θ̂′b(x̂b)

)+ `

2εb

 θ̂′b(x̂b)

σg

∫ σ̃g

θ̂g(x̂g ,x̂b ,θ̂b)
dv− 1

σg

∫ σ̃g

θ̂g(x̂g ,x̂b ,x̂b−εb)
dv−

∫ θ̂b

x̂b−εb

∂θ̂g(·)
∂x̂b

σg
du


= Db

Nb +2εb
+ `

2εbσg

(
Nb

Nb +2εb

(
θ0

g +ηg − θ̂g(θ̂b)
)
−

(
θ0

g +ηg − θ̂T
g

)
+

(
`Nb2εg

1+2εg

(Nb − x̂b +εb)
Nb +2εb

))
= ((Nb +2εb)σg)−1

[
σgDb −`(σ̃g − θ̂T

g )+ `

2εb

(
`Nb2εg

1+2εg

(
1− Nb

Nb +2εb

)
(Nb − x̂b +εb)

)]

Now note that, σgDb −`(σ̃g − θ̂T
g ) = σg

(
Db −` (σ̃g−θ̂T

g )
σg

)
> 0 since Db > ` and

(σ̃g−θ̂T
g )

σg
≤ 1 because it is a

probability. Further, note that Nb +εb − x̂b ≥ 0 because the existence of an upper dominance region implies

that x̂b is bounded above by Nb +εb. Thus, ∂π̄b(x̂b ,x̂g)
∂x̂b

> 0.
where we used that, due to the existence of dominance regions, x̂g ≥ εb.
Note further that it is straightforward to show that ∂πb/∂x̂g < 0. To eventually establish the Lemma,

apply the implicit function theorem separately to equations πb(x̂b, x̂g, x̂b) = 0 and πg(x̂g, x̂b, x̂g) = 0. This

yields x̂′b(x̂g)=− ∂πb /∂x̂g
∂πb /∂x̂b

> 0 and x̂′g(x̂b)=− ∂πg /∂x̂b
∂πg /∂x̂g

< 0.

Proof of Lemma 2. We have shown that ∂π̄b/∂x̂b > 0. Moreover, we have

∂πb

∂x̂g
=− `

2εb

∫ θ̂b

x̂b−εb

1
σg

du < 0. (A27)

The function x̂b = fb(x̂g) is implicitly defined by π̄b(x̂b, x̂g)= 0. Application of the implicit function theorem

yields f ′b(x̂g)=− ∂π̄b /∂x̂g
∂π̄b /∂x̂b

> 0.
The function x̂g = fg(x̂b) is implicitly defined by π̄g(x̂g, x̂b) = 0. From the implicit function theorem fol-

lows f ′g(x̂b)=− ∂πg /∂x̂b
∂πg /∂x̂g

. Since ∂π̄g/∂x̂g > 0, the sign of f ′g(x̂b) is determined by the sign of −∂πg/∂x̂b. Consider
the derivative of πg with respect to x̂b. We can write πg as

Dg(x̂g +εg)
1+2εg

− Dg`Nb

2εbσb(1+2εg)

∫ θ̂b(x̂b)

−ηb

(u+εb − x̂b)du.

Then, the derivative is given by

∂πg

∂x̂b
= − Dg`Nb

2εbσb(1+2εg)
∂

∂x̂b

(∫ θ̂b(x̂b)

x̂b−εb

(u+εb − x̂b)du

)

∝ − ∂

∂x̂b

(∫ θ̂b(x̂b)

x̂b−εb

(u+εb − x̂b)du

)

= (θ̂b +εb − x̂b)
(
1− ∂θ̂b

∂x̂b

)
> 0,

since ∂θ̂b
∂x̂b

= Nb
Nb+2εb

< 1.

Lemma A13. The signs of the derivatives of the critical signals x̂b and x̂g with respect to parameters
{`, Nb,θ0

b,θ0
g} are given by

dx̂g

d`
> 0 and

dx̂b

d`
≶ 0;

dx̂b

dNb
> 0, and

dx̂g

dNb
> 0;

dx̂b

dθ0
b

< 0 and
dx̂g

dθ0
b

< 0;

dx̂b

dθ0
g
< 0 and

dx̂g

dθ0
g
> 0.
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Proof of Lemma A13. Let ξ= (`, Nb,θ0
b,θ0

g) with typical element ξk. The total effects dx̂b
dξk

and dx̂g
dξk

can be
found by applying the implicit function theorem to the set of equations

π̄g(x̂g, x̂b,ξ)= 0

π̄b(x̂b, x̂g,ξ)= 0

The Jacobian of this system is given by

J=
(
∂πb

∂x̂b
∂πb

∂x̂g
∂πg

∂x̂b
∂πg

∂x̂g

)
=

(
(+) (−)
(+) (+)

)
,

and thus its determinant is positive, |J| > 0.
The total effects can be computed as

dx̂b

dξk
=

∣∣∣∣∣−
∂π̄b

∂ξk
∂π̄b

∂x̂g

− ∂π̄g

∂ξk
∂π̄g

∂x̂g

∣∣∣∣∣
|J| =

− ∂π̄b

∂ξk
∂π̄g

∂x̂g
+ ∂π̄b

∂x̂g
∂π̄g

∂ξk

|J| . (A28)

and

dx̂g

dξk
=

∣∣∣∣∣
∂π̄b

∂x̂b
− ∂π̄b

∂ξk
∂π̄b

∂x̂g
− ∂π̄g

∂ξk

∣∣∣∣∣
|J| =

− ∂π̄g

∂ξk
∂π̄b

∂x̂b
+ ∂π̄g

∂x̂g
∂π̄b

∂ξk

|J| . (A29)

It follows that
∂π̄b

∂ξk
× ∂π̄g

∂ξk
> 0 ⇒ dx̂b

dξk
> 0,

∂π̄b

∂ξk
× ∂π̄g

∂ξk
< 0 ⇒ dx̂b

dξk
≷ 0,

∂π̄b

∂ξk
× ∂π̄g

∂ξk
< 0 ⇒ dx̂g

dξk
> 0,

∂π̄b

∂ξk
× ∂π̄g

∂ξk
> 0 ⇒ dx̂g

dξk
≷ 0.

(A30)

The partial derivatives with respect to ` are given by

∂π̄b

∂`
= 1

2εb

∫ θ̂b

x̂b−εb

1
σg

∫ σ̃g

θ̂g(u)
dvdu − `

2εb

∫ θ̂b

x̂b−εb

εgNb

εb(1+2εg)
(u+εb − x̂b)

σg
du

= 1
2εbσg

∫ θ̂b

x̂b−εb

[∫ σ̃g

θ̂g(u)
dv − εg`Nb

εb(1+2εg)
(u+εb − x̂b)

]
du

= 1
2εbσg

∫ θ̂b

x̂b−εb

[
σ̃g − θ̂T

g − 2εg`Nb

εb(1+2εg)
(u+εb − x̂b)

]
du

= θ̂b − x̂b +εb

2εb

{(
σ̃g − θ̂T

g

σg

)
+ 2`εgNb(x̂b −εb)

σgεb(1+2εg)
− 2`εgNb(θ̂b + x̂b −εb)

2σgεb(1+2εg)

}

= θ̂b − x̂b +εb

2εb

{
σ̃g − θ̂T

g

σg
+ `εgNb(x̂b −εb − θ̂b)

σgεb(1+2εg)

}

= θ̂b − x̂b +εb

2εb

{
σ̃g − θ̂g(θ̂b)

σg

}
≥ 0, (A31)

where we have used the abbreviation θ̂g(u) := θ̂g(x̂g, x̂b,u).
Furthermore,

∂π̄g

∂`
= −Dg

2εgσb

∫ θ̂b

−ηb

εgNb(u+εb − x̂b)
εb(1+2εg)

du

= −DgNb

σb(1+2εg)

∫ θ̂b

x̂b−εb

u+εg − x̂b

2εb
du < 0. (A32)
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Applying conditions (A30), it follows immediately from equations (??) and (??) that

dx̂g

d`
> 0 and

dx̂b

d`
≶ 0.

Condition (11) in the text can be derived by explicitly calculating

−∂π̄
b

∂`

∂π̄g

∂x̂g
+ ∂π̄b

∂x̂g

∂π̄g

∂`
.

Using equations (A26), (A27), (A31) and (A32), we obtain

− Dg

1+2εg

(
θ̂b − x̂b +εb

2εb

){
σ̃g − θ̂g(θ̂b)

σg

}
+

(
θ̂b − x̂b +εb

2εb

) Dg`Nb

σgσb(1+2εg)

∫ θ̂b

x̂b−εb

u+εb − x̂b

2εb
du,

which is negative if and only if

σ̃g − θ̂∗g(θ̂∗b )> `Nb

σb

∫ θ̂b

x̂b−εb

u+εb − x̂b

2εb
du,

where the right-hand side are the ex ante expected guarantee payments Le(θ̂∗b , x̂∗b ,`). Subtracting θ̂∗g(θ̂∗b )
from both sides of the equation, dividing through by σ̃g − θ̂∗g(θ̂∗b ) and rearranging yields condition (11) in
the text.

The derivatives with respect to Nb are given by

∂π̄b

∂Nb
= 1

(Nb +2εb)2

[(
−Db +`

σ̃g − θ̂g(θ̂b)
σg

)
− `2

σg(1+2εg)
(Nb +εb − x̂b)

(Nb +2εb)
(
(Nb +2εb)2 +Nb(Nb +4εb)

)]< 0

(A33)
and

∂π̄g

∂Nb
=− Dg`

2εb(1+2εg)σb

[∫ θ̂b

−ηb

(u+εb − x̂b)du+ 2εb(x̂b +εb)
(Nb +2εb)2

(
θ̂b − x̂b +εb

)]< 0. (A34)

Using condition (A30), we obtain

dx̂b

dNb
> 0, and

dx̂g

dNb
≷ 0.

To show that dx̂g
dNb

> 0, we calculate

− ∂π̄g

∂Nb

∂π̄b

∂x̂b
+ ∂π̄g

∂x̂b

∂π̄b

∂Nb
.

Using equations (??), (A27), (A33) and (A34), we obtain

Ω

(
θ̂b +εb − x̂b

4εb
+Nb(x̂b +εb)

)
− ΩNb

Nb +2εb

x̂b +εb

Nb +2εb
− `2Nbεg(θ̂b +εb − x̂b)2

4ε2
bσg(Nb +2εb)(1+2εg)

,

where Ω := Db−` σ̃−θ̂g (θ̂b )
σg

Nb+2εb
. Since Nb ≥ 1, we have

ΩNb(x̂b +εb)> ΩNb

Nb +2εb

x̂b +εb

Nb +2εb
.

Moreover,

Ω

(
θ̂b +εb − x̂b

4εb

)
− `2Nbεg(θ̂b +εb − x̂b)2

4ε2
bσg(Nb +2εb)(1+2εg)

> 0

⇔Ω> `2Nbεg(θ̂b +εb − x̂b)
εbσg(Nb +2εb)(1+2εg)

⇔ Db −`
σ̃− θ̂T

g

σg
+ `2Nbεg(θ̂b +εb − x̂b)

εb(1+2εg)σg
> `2Nbεg(θ̂b +εb − x̂b)

εbσg(1+2εg)

⇔ Db −`
σ̃− θ̂T

g

σg
> 0.
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We thus have − ∂π̄g

∂Nb
∂π̄b

∂x̂b
+ ∂π̄g

∂x̂b
∂π̄b

∂Nb
> 0, which implies dx̂g

dNb
> 0.

Finally, the derivatives with respect to θ0
b and θ0

g are given by

∂π̄b

∂θ0
g
= `

2εb

∫ θ̂b(x̂b)

xnb−εb

(
1
σ2

g

∫ σ̃g

θ̂g(x̂g ,x̂b ,u)
dv

)
du > 0,

∂π̄b

∂θ0
b

= 0,

∂π̄g

∂θ0
g
= 0,

∂π̄g

∂θ0
b

= Dg`Nb

(1+2εg)σ2
b

∫ θ̂b

−ηb

u+εb − x̂b

2εb
> 0.

Combining these with equations (A28) and (A29), we obtain

dx̂b

dθ0
b

< 0,
dx̂b

dθ0
g
< 0,

dx̂g

dθ0
b

< 0,
dx̂g

dθ0
g
> 0.

Proof of Lemma 4. Observe that for given θb, total guarantee payments are given by{ Nb`
2εb

∫ θn+εb
x̂b

du if θb < θ̂∗b
0 else

.

Hence, whenever εb → 0, x̂∗b → θ̂∗b and the integral collapses to zero. But then, the guarantee does not
appear anymore in the government’s default condition and the threshold for government default converges
to θ̂∗g = Cg/Dg, as in the canonical model in Lemma ??. The probability of a government default can then

be calculated as Pg ≡Pr
(
θg < θ̂∗g

)
= Cg /Dg+ηg

σg
.

The critical bank creditor’s indifference condition can be explicitly written as

π̄b(x̂b, x̂g)= Db(x̂b +2εb)
Nb +2εb

+
`(σ̃g − θ̂T

g )(θ̂b − x̂b +εb)

σg2εb
− `εgNb(θ̂b − x̂b +εb)2

4εbσg(1+2εg)
−1= 0.

Observe that θ̂b− x̂b+εb = 2εb(Nb− x̂b+εb)/(Nb+2εb). Substituting this into the indifference condition and
taking the limit εb → 0 leads to

π̄b(x̂b)= Db x̂b + (1−Pg)`(Nb − x̂b)−Nb = 0,

which can be solved for the critical signal,

x̂b = θ̂b = Nb(1−`(1−Pg))
Db −`(1−Pg)

. (A35)

Proof of Lemma 5. We obtain from equation (A35)

∂θ̂∗b
∂`

= Nb(1−Pg)(1−Db)
(1−`(1−Pg))2

< 0.

The probability of a systemic crisis can be computed as

q(`)= Pg ×Pb(`),

with Pb(`)= θ̂∗b+ηb
σb

. Since Pg does not depend on `, the derivative of the cost of crises measure with respect
to ` can then be computed as

K ′(`)= (1−Pg)φb
∂Pb

∂`
+Pg(1−φg)

∂Pb

∂`
.

Substituting
∂Pb

∂`
= 1
σb

( Nb(1−Pg)(1−Db)
(1−`(1−Pg))2

)
gives the expression in the text.
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Proof of Lemma 6. For εg → 0 follows from Equation (5)

θ̂∗g = x̂∗g(`) ∀θb.

The expression for θ̂∗b is given by Equation (4). Since εg → 0, we have q(`) = Pb(`)×Pg(`) where Pb(`) is

given in equation (15) and Pg(`)= x̂∗g(`)+ηg
σg

. We have

P ′
b(`)= 1

σb

Nb

Nb +2εb

dx̂∗b(`)

d`
and P ′

g(`)= 1
σg

dx̂∗g(`)

d`
.

The FOC condition is given by

K ′(`)=φbP ′
b(`)+φgP ′

g(`)+ (1−φb −φg)
(
Pb(`)P ′

g(`)+Pg(`)P ′
b(`)

)
= P ′

b(`)
(
φb(1−Pg(`))+ (1−φg)Pg(`)

)+P ′
g(`)

(
φg(1−Pb(`))+ (1−φb)Pb(`)

)
= 0.
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