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1 Introduction

Monitoring and assessing national and international financial system soundness in a timely

manner is a wide and complex field of work. Vast research in finance has led to a great

variety of non-mutually exclusive financial stability indicators based on different theoretical

and empirical grounds (see e.g. IMF (2009)).

This paper derives a market based indicator by applying the so-called option implied Prob-

ability of Default (option iPoD) methodology to derive time series of option based financial

stability measures together with the corresponding asset distributions. The approach was

suggested in Capuano (2008) and numerically robustified as well as evaluated in Vilsmeier

(2011). The framework uses the cross entropy function in order to estimate the option im-

plied risk neutral densities (RNDs) and allows for a probability mass point in the RND at a

value of zero for the underlying. This mass point can be interpreted as Probability of Default

(PoD). As opposed to CDS- or bond based PoD estimation approaches, our methodology

has the substantial advantage that it requires no assumptions for the recovery rate. Fur-

ther, we do not need to assume any stochastic process for our risk neutral pricing model,

which is the basis for approaches like Distance to Default and for the derivation of option

based indicators like Implied Volatility. Using a non-parametric estimation procedure, our

approach provides the entire option implied RND from the observed option prices and is

highly flexible regarding the functional form of the implied distribution. Hence, unlike above

mentioned approaches our procedure sets the stage for copula based-multivariate financial

stability analyses with time varying RNDs and PoDs.

There exists a large literature on RND estimations, differing by the statistical methods ap-

plied to extract the RND from the observed option prices (for an extensive overview see

Jackwerth (2004)). So far, though, RND estimates have not been applied to systematically

evaluate a specific firm’s soundness over a longer period of time; instead they were used for

short term applications like evaluations of option pricing models (e.g. Figlewski (2008)) or

testing market expectations around certain events (e.g. Capuano (2008); Melick and Thomas

(1997)). Possible reasons are that RNDs do not provide a unique and easy to interpret stabil-

ity measure and that their estimations are often plagued by limited sets of strikes, noisiness

and maturity dependence. Moreover, one faces high computational efforts, and numerical

instabilities of the statistical approach can make it difficult to obtain consistent RND esti-

mates over long periods of time. However, our empirical implementation of the option iPoD

framework has the great advantage that it overcomes these described problems.

We estimate RND- and, hence, PoD time series for 19 of the largest US banks and financial
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institutions. The considered sample spans over eleven years from February 2002 to February

2012, which leaves us with a unique opportunity to evaluate our indicator’s properties and

forecasting abilities in an environment of huge macroeconomic distress and to compare it

with more resilient periods as from 2004 to 2007.

In order to obtain the RND/PoD estimates, we use alternately five-, six-, and seven month

call option contracts. Subsequently, we remove the maturity dependence inherent in the

original time series by applying a non-parametric quantile regression approach to the pooled

PoDs. The time series of the maturity corrected PoDs are evaluated with regard to their

consistency and predictive power and their properties are compared to Credit Default Swap

Spreads (CDS). In this context, we derive an indicator for the systemic risk prevailing in the

US financial sector by applying a Principal Component Analysis (PCA) to the firm specific

PoDs. Thereby, we isolate the systematic components from the idiosyncratic risks of each

bank. Further, for a more clear interpretation of the respective levels of CDS and PoDs, we

check and compare the indicators’ properties in relation to the systemic risk.

Our results give evidence for the predictive/signalling power of the option iPoD methodology

with regard to crises periods and for its ability to identify financially vulnerable institutions

in a timely manner. We find that CDS and the option implied PoDs exhibit very similar

dynamics, but PoDs being superior to CDS in identifying the high risk banks prior to the

Lehman crisis in September 2008.

Our paper contributes to the literature in several ways. We are the very first to empirically

apply the option iPoD framework to derive time series of RNDs/PoDs and, hence, are the

first that give a comprehensive empirical evaluation of that methodology. It is demonstrated

how the option iPoD methodology can be empirically implemented in order to get consistent,

smooth and maturity corrected PoDs. This was achieved by the appropriate choice of liquidi-

ty weights and the use of a suitable maturity cycle of option contracts. With the estimated

PoDs we provide firm individual financial risk indicators, and in addition we use them to

derive an indicator for the systemic risk of the overall US financial sector. Moreover, we give

empirical evidence for the high informational content of the option iPoD framework, which

is shown to be superior to the informational content of CDS. We stress that this is due to

the fact that for CDS differing and unknown recovery rates over firms and periods of time

complicate the interpretation of the levels of CDS, while iPoDs can be interpreted directly

as risk neutral default probabilities as they are equity based. This allows for a consistent

comparison of our PoD levels irrespective of the considered financial institutions and time.

Finally, our approach provides a sound basis for multivariate - copula based - financial risk

analyses, as the framework provides time series for firm specific PoDs jointly with the entire
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corresponding asset distributions.

The remainder of the paper is structured as follows. Section 2 describes the underlying

methodology of our empirical framework. This comprises mainly the entropy based estima-

tion of the RND and the PoD. This is followed by the description of the data used in our

analysis. Section 4 explains the empirical implementation of our approach on how to ob-

tain a stable and smooth time series of PoD- and RND estimates. The estimation results as

well as the comparisons with the CDS are presented in section 5. Finally, section 6 provides

concluding remarks and offers prospects for further research.

2 Methodology

The statistical framework used in this paper was originally suggested by Capuano (2008). In

Vilsmeier (2011) a more stable objective function for the RND estimation and an alternative

PoD determination procedure were proposed. In this paper, we apply this version.

The idea of the framework is to allow for a probability mass point for a value of zero of the

stock S in the estimation of a stock option implied RND. A RND is a density function f (ST )

that describes the investors’ expectations regarding the value of the underlying at time to

maturity T , implied by the observed option prices for different strikes. In order to obtain a

RND one uses the continuous risk neutral pricing formula for a call option

CKi
0 = e−rT

∞∫
ST =Ki

(ST −Ki) f (ST )dST , i = 1 . . .B. (1)

The formula should be solved with respect to the unknown density f (ST ) for given option

prices CKi
0 at different strikes Ki. Equation (1) states that the today’s observed option prices

must be equal to the discounted expectation of the inner values under risk neutral probability

measure (risk neutral pricing), where r denotes the annualized risk free rate and T the time

to maturity of the option (measured in years). The number of observable option prices for

different strikes K is denoted by B whereat the current stock price S0 is included as an option

with strike K1 = 0. One faces an underdetermined estimation problem, as we do not have

an infinite set of strikes (Breeden and Litzenberger (1978)). There are different statistical

approaches to determine a unique density f ∗(ST ) out of the infinite many that are compatible

with the observed prices (see e.g. Jackwerth (2004)). The approach chosen in this paper is
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to minimize the so-called cross entropy function

CE[ f (ST ), f 0(ST )] =

∞∫
0

f (ST ) log
f (ST )

f 0(ST )
dST , (2)

under restrictions imposed on the moments of f (ST ) given by the system of equations (1) and

where f 0(ST ) denotes some prior distribution.4 Thereby, the so-called entropic distance of

f (ST ) to some prior density f 0(ST ) is minimized (see e.g. Cover and Thomas (2006)). We use

the cross entropy concept since the prior density, f 0(ST ), is necessary for the determination

of the PoD.

If one assumes that a stock price of zero implies default, then a probability mass point for

ST = 0 in the RND could be interpreted as the investors’ expectation regarding a firm’s

default between now and time to maturity T of the option. Given our continuous estimation

framework, such a mass point cannot be estimated as a ‘jump’ in the density at ST = 0.

Instead, we extend the domain of the RND for ST such that all realisations within this

additional interval of values imply a future stock price of zero. In this way the PoD is not

estimated as a mass point but as the integral over the density assigned to a certain sub-

domain of the RND. The additional interval of values is obtained by shifting the domain for

the future stock value ST upwards by some constant D, and estimating f (VT ), with VT =

ST +D. For the payoff of the option in T (the inner value) now holds: CT = max(VT−D−K;0),

and any value VT ≤D will imply an inner value of zero for arbitrary K.5 The integral of f (VT )

over the interval [0;D] will yield our PoD estimate.

A theoretical interpretation to the described PoD estimation procedure is possible, if one

assumes that the so-called structural approach of Merton (1974) applies to a firm’s balance

sheet. In the structural approach a firm’s value of assets is given by the value of its debt plus

the value of its equity. The firm defaults if the value of assets does not cover the value of

debt. Hence, in the PoD mechanism VT can be interpreted as value of assets, ST as the value

of equity and D as the value of debt.6

Using numerical experiments, in Vilsmeier (2011) it was found that for arbitrary reasonable

RND forms and PoD levels the procedure can perfectly estimate a probability mass point

for ST = 0 given that the constant D lies within the interval [0;20]. As an exact rule for the

4The cross entropy function is based on the entropy concept. For a more thorough discussion about that
concept see Shannon (1948) and Jaynes (1957).

5Note that before extending the domain of ST only ST = 0 implied an inner value of zero for arbitrary K.
6Note that the assumptions of the structural approach have no implications for the PoD estimation. Any

event that will lead in the investors’ expectation to ST = 0 will increase the PoD.
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determination of the optimal D has not yet been detected, we average the PoDs obtained

for RND estimates with Ds ranging from 0 to 20. The optimal RND is then identified as

the one that provides the PoD closest to the average PoD (‘averaging approach’). Despite

its quite ad hoc nature, in numerical experiments this procedure yielded highly accurate

estimates covering a great number of RND/PoD specifications. As will be seen in section 5

the procedure produces also highly plausible results if applied to real option data.7. For the

RND estimation we use the following system of equations, which we express in terms of VT

and D:

CE[ f (VT ), f 0(VT )] =

∞∫
0

f (VT ) log
f (VT )

f 0(VT )
dVT (3)

CKi
0 = e−rT

∞∫
VT =D+Ki

(VT −D−Ki) f (VT )dVT , i = 1 . . .B (4)

∞∫
VT =0

f (VT )dVT = 1. (5)

(3) is the cross entropy function for f (VT ) with regard to some prior distribution f 0(VT ).

(4) denotes the continuous risk neutral pricing formula and (5) is an additional moment

condition that ensures that the density integrates up to one.

Combining (3) to (5), the estimation setup can be written using the Lagrange multiplier

approach:

L =

∞∫
VT =0

f (VT )

[
log

f (VT )

f 0(VT )

]
dVT + λ0

1−
∞∫

VT =0

f (VT )dVT


+

B

∑
i=1

λi

CKi
0 − e−rT

∞∫
VT =D+Ki

(VT −D−Ki) f (VT )dVT

 . (6)

Optimizing (6) with respect to f (VT ) yields (see e.g. Cover and Thomas (2006)):

f ∗(VT ) =
1

µ(λ )
f 0(VT )exp

[
B

∑
i=1

λie−rT 1VT>D+Ki(VT −D−Ki)

]
, (7)

7The intuition behind the ad hoc procedure is explained in Vilsmeier (2011)
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with

µ(λ ) = exp(1−λ0) = exp(−λ
′
0) =

∞∫
VT =0

f 0(VT )exp

[
B

∑
i=1

λie−rT 1VT>D+Ki(VT −D−Ki)

]
dVT . (8)

We see from (7) that the optimal solution will be in the family of exponential distributions.

Hence, the estimation procedure is highly flexible regarding the underlying shape of the RNDs

and is able to approximate almost arbitrary functional forms if we have enough option prices.

Further, the estimated PoD will be equal to
∫ D

0
f 0(VT )
µ(λ ) as the expression in the exponential

function will be equal to 0 for all VT ≤D. That means that the estimated PoD and the shape

of the RND interact, as the Lagrange multipliers also determine the shape of the RND.

If we assume some value for D, we obtain our RND and PoD if we are able to determine

the λi in (7). This could be achieved if one replaces f (VT ) in the Lagrangian by (7), and

optimizes regarding the λi. The resulting system of equations could be solved using e.g. a

multivariate Newton-Raphson algorithm. The search for the roots, though, is numerically

very unstable due to near singularities of the involved Jacobian for large domains of the λi.

Hence, in Vilsmeier (2011), following the suggestions in Alhassid et al. (1978) and Agmon

et al. (1979), an objective function for the λi was derived that yields efficient and numerically

stable optimizations. The derivation is based on the finding that a function can be defined

such that for any trial set of parameters λ Tr it provides a theoretical lower bound to the

value of the cross entropy of the optimal density. This function has its minimum for the

optimal set of λ s.

If one assumes some finite maximum and minimum value, Vmax and Vmin, for the value of

assets (per share) in the RND domain8 and a uniform prior, one can solve the integrals

8The value of Vmax should be large (e.g. ten times the current stock price) but can be arbitrarily chosen
as it does not significantly influence the estimates. Vmin denotes the minimal possible realisation for VT and
is set equal to zero in our applications.
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involved in the objective function analytically and obtains:

F = log
(

1
Vmax−Vmin

)
+ log

{
exp

(
−

B

∑
i=1

wiλiC
Ki
0

)
(D−Vmin)

−
B−1

∑
i=1

exp
(

∑
i
j=1 w jλ j(e−rT (Ki−K j)−CK j

0 )−∑
B
k=i+1 wkλkC

Kk
0

)
e−rT (∑

i
j=1 w jλ j)

−
exp
(

∑
i
j=1 w jλ j(e−rT (Ki+1−K j)−CK j

0 )−∑
B
k=i+1 wkλkC

Kk
0

)
e−rT (∑

i
j=1 w jλ j)



−

exp
(

∑
B
j=1 w jλ j(e−rT (KB−K j)−CK j

0

)
− exp

(
∑

B
j=1 w jλ j(e−rT (Vmax−D−K j)−CK j

0

)
e−rT (∑

B
j=1 w jλ j)

 ,

(9)

where wi denotes weights that are pre-multiplied to the Lagrange multiplier. The weights

will ensure that more liquid option contracts (measured in our approach in terms of open

interest) have to be met more closely by the estimated RND. The assignment of the liquidity

weights is very important in order to obtain timely consistent and smooth PoD estimates.

This issue will be addressed in section 4. The minimization of (9) is numerically highly stable

and can be computed in a fast manner, which is prerequisite for our applications as we had

to estimate in total about one million RNDs based on options that provide up to 40 strikes

a day.

3 Data

Our option and stock data sample comprises 19 US banks and financial institutions and

ranges from February 6, 2002 to February 24, 2012. Hence, the late consequences of the

early 2000s recession, the first financial turmoils in mid-2007, the world financial crisis of

2008/2009 as well as the repercussions of the European sovereign debt crisis of 2011/2012 are

included in our data set. Regarding the level and variance in the degree of financial distress,

this data sample provides us with a unique opportunity to evaluate our indicator’s properties

over a highly diversified period of time.

Among the 19 covered financial institutions there are 14 banks, namely: Goldman Sachs (GS),

Wells Fargo (WFC), Citigroup (C), Bank of America (BAC), JPMorgan Chase (JPM), Mor-
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gan Stanley (MS), PNC Bank (PNC), State Street (STT), Bank of New York Mellon (BK),

Lehman Brothers (LEH), Bear Stearns (BSC), Wachovia (WB), Merill Lynch (MER) and

Washington Mutual (WM).9 This data set comprises the past and present largest US banks.

In addition to the mentioned 14 banks, our sample includes 5 non-banking financial entities

with great relevance for the overall US financial sector: The American International Group

(AIG), Countrywide (CFC), MBIA (MBI), Blackstone (BX) and Blackrock (BLK).

Our data set covers not only a varied time period but also includes a quite heterogeneous

sample of financial institutions. Some have performed quite well during the recent financial

crisis, some others depended on governmental financial aid during the turmoils and still oth-

ers went bankrupt or were taken over. Thus, our sample can be viewed as an appropriate

proxy for the US financial sector and leaves us with a substantial informational input for our

empirical analysis.

The daily equity option, stock and their related data of the above mentioned financial in-

stitutions were obtained from the New York Stock Exchange (NYSE) via the data provider

Stricknet. The extraction of the relevant information from our vast data set is a quite chal-

lenging and complex task, due to option market inherent complexities, major shortcomings

of the old stock option symbology (before February 2010) and due to changes in the option

symbolic system in February 2010.10

As a risk free interest rate we used the 3-month Treasury Bill secondary market rate ob-

tained from the FRED data base. The CDS spread data were obtained from Markit Group

and range from February 6, 2002 to January 18, 2012. The sample covers the same insti-

tutions as the stock and option data, except for BK, BX and BLK. Due to enhanced data

availability, we extracted 5-year CDS under the credit event of modified restructuring11.

4 Empirical Implementation

There are important issues that have to be taken into account in order to be able to estimate

smooth and timely consistent RND time series. Some of these will be briefly sketched in this

section.

9We are well aware of the fact that a distinctive classification of the the financial entities is subjected to
certain inaccuracies due to the complexity of the underlying business portfolios.

10For the sake of brevity we do not address this issue further. However, explanations concerning our data
filtering procedure are available upon request.

11Under this contract clause, restructuring of debt is still defined as a credit event but deliverable obliga-
tions are limited to bonds with maturity of less than 30 months after a restructuring.
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The first issue concerns the so-called maturity dependence of RND estimates. That is, when

estimating RNDs for subsequent days using option contracts with the same expiry date,

RNDs closer to the expiry date will exhibit ceteris paribus less uncertainty regarding the

future value of the underlying. The problem arises because traded option contracts exist

only for a few expiry dates within a year, such that one cannot extract time series of RNDs

with constant time to maturity. To solve this problem we introduce in the following a re-

gression based procedure to remove the maturity effects from the moments and PoDs of the

estimated RNDs. For our procedure to work, though, we need to keep the maturity effect

between the estimated RNDs as small as possible. Very similar time to maturity would be

obtained if one constantly uses option contracts that expire in the subsequent month (as

such a contract always exists). However, this approach has the serious drawback that the

derived PoDs would indicate the probability of a firm’s default within the next few weeks

only, and the obtained results would be very erratic as only very imminent risks significantly

change investors’ expectations. Consequently, one wishes for a risk evaluation over a longer

time period. Option contracts with longer time to maturity (e.g. 6 month) are not newly

initiated at each month, though. Instead, different firms have different cycles within they

initiate contracts with longer time to maturity than one month.

Taking into account the trade-off between maturity dependence and long term risk evalua-

tion, we identified and applied three different ’maturity cycles’ for our examined companies

and allocated institutions with the same maturity scheme into one group. Hence, in our es-

timation implementation we considered three sub-samples of financial institutions. The first

group consists of GS, WFC, MS, BLK, BK, LEH, BSC, WB, MER, CFC and WM with,

starting in January, a cycle of six-, five- and seven month maturity (i.e. seven month contracts

are initiated in March, June, September and December), alternating throughout the years.

The second group uses a five-, seven- and six month maturity scheme and covers C, JPM

and BX. Finally, the third group comprises BAC, AIG, MBI, PNC and STT and follows a

seven-, six- and five month time to maturity cycle. Thereby, over the entire considered time

period of 2583 days for which we estimated the RNDs, we obtain repeatedly RNDs with

the same time to maturity. This is the prerequisite for our maturity dependence adjustment

procedure to work.

The basic idea of our regression based maturity correction approach is quite simple. We start

by pooling our PoDs over periods of time and firms, and assign to each PoD estimate the

time to maturity of the options that was used to estimate the RND. Then we regress the

PoDs on the respective time to maturity. As all times to maturity run repeatedly from 130
days to 220 days, we have for each of the time to maturities several PoD estimates such
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that the regression based approach should yield rough approximations of the true maturity

effects. In order to admit for non-linear maturity effects as well as for different effects for

different quantiles of the PoD distribution we apply a non-parametric quantile regression ap-

proach. More precisely, we use the methodology of additive quantile regressions (Hastie and

Tibshirani (1986); Hastie and Tibshirani (1990)) in which the usual predictor of the quantile

regression is augmented with additive non-parametric terms, and smoothing restrictions are

imposed onto the fitted function. As smoothing restriction we apply the method of total

variation regularization as suggested in Koenker et al. (1994).12 Further, we restrict our fit-

ted function to have a positive slope, as we expect that a higher time to maturity leads on

average to a higher PoD. Figure 7 (Appendix) exemplarily depicts for each time to maturity

the 40%- and 90%-PoD quantiles, as well as the respective fitted functions for each quantile.

In order to carry out the maturity correction, we obtain the fitted PoDs for each time to

maturity and different quantiles (in 5% steps), and calculate the difference between the fitted

values of the highest time to maturity and the respective lower time to maturities for each

quantile. The obtained differences are our correction factors for the estimated PoDs. The

size of the correction factor applied to a specific PoD depends on how large the assigned

time to maturity is and to which quantile the respective PoD belongs. After the correction

all PoDs have a theoretical time to maturity of 220 days that is the maximum possible time

to maturity that we have in our sample.13 Figure 8 (Appendix) shows examplary the effects

of our maturity correction procedure on the original PoD time series of Lehman Brothers.

We can state that the maturity correction changes nothing regarding the dynamics of the

time series. PoDs are only systematically higher, which is what we expect if time to maturity

increases.

A further important issue that we detected in the estimation of our RND time series is the

use of adequate liquidity weights in the optimization procedure as shown in our objective

function (9). These weights ensure that more liquid option contracts, which presumably ex-

hibit more information about the future value of the underlying (prices with less noise), are

met more closely by our estimated RNDs than illiquid contracts. The weights are calculated

by dividing open interest (contracts traded in the past and not exercised or evened up yet)

for a specific strike by the sum of open interest over all available strikes for a firm’s stock

option. We found that the use of liquidity weights based on open interest leads to much

smoother and more consistent time series than the use of trading volume, as often suggested

in the literature. One reason might be that crucial market information are discarded if the

12The methodology is available in the statistical software R using the ‘quanteg’ package.
13The correction process could also be applied to different moments of the RNDs in order to obtain

maturity corrected densities.
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sample is weighted by trading volume. As the currently observed price arises as a result of

current and past trading, a contemporaneous trading volume of zero does not necessarily

imply such a contract is illiquid and has no information about the investors’ expectations.

Quite the contrary, if there is no trading today but there was high trading in the past (mea-

sured in open interest), this means the contract is liquid but the investors’ expectations did

not change with respect to the previous day(s).

Finally, we have to set some model parameters before we can carry out the RND estimations.

The framework described in section 2 is designed such that we can set global parameters

which are used for the RND estimations for all institutions and all periods in order to be

able to estimate such a large number of RNDs. As pointed out in Vilsmeier (2011) the level

of D, i.e. our debt value, does not influence our estimation results but only the length of the

interval [Vmin;D]. This implies that no matter how large we set D, if Vmin is always D minus

some constant (e.g. 10), the obtained results are exactly the same. Knowing this, we set our

Vmin = 0 and D takes integer values 0 to 20 in the averaging approach. For Vmax, we choose

Vmax = 850 that will be large enough for the asset value domain of all banks and for all time

periods.

5 Results

This section will show that the empirical implementation of our estimation approach yields

consistent and plausible PoD estimates. We compare their performance to established in-

dicators like CDS and show that our iPoDs are better than CDS in identifying high risk

institutions prior to incisive events.

5.1 Time Series of option iPoDs

In Figure 1 we see an example for an estimated time series of maturity corrected PoDs,

namely for Citigroup. The time series covers the whole sample size running from February

2002 to February 2012 and displays some typical dynamics that one can find in the PoD time

series of all institutes in our sample (see Figure 9 (Appendix) for a complete overview of PoDs

for all institutions). PoD levels are elevated in the aftermath of the 2001 recession, followed

by a very calm period with low PoDs until mid-2007. Starting with July 2007, PoDs increase

continuously until mid-2009 in the course of the US subprime crisis. The bankruptcies of

Bear Stearns (BSC) and Lehman Brothers (LEH) led to sharp inclines (see highlights in

Figure 1) but strongly elevated risk is already displayed in advance of these events. In mid-
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Figure 1: Time Series of maturity corrected PoDs in basis points for Citigroup from February
2002 to February 2012
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Note: C I indicates the governmental rescue of Citigroup on November 23, 2008, C II denotes Citigroup’s large restructuring

measures on April 22, 2009 and C III labels the downgrade of Citigroup by Moody’s on September 21, 2011. BSC and LEH

denote the collapse of Bear Stearns on March 16, 2008 and the Lehman Brothers bankruptcy on September 15, 2008,

respectively.

2009, PoDs return to pre-LEH period levels and in end-2010/beginning-2011 even to levels

of the pre-BSC period. In August 2011 PoDs begin to increase again to pre-LEH levels as a

consequence of the European sovereign debt crisis.

Firm specific events for Citigroup are highlighted in Figure 1 with C I, C II and C III. C

I indicates the date when Citigroup was rescued by the US government on November 23,

2008, C II indicates the date when large restructuring of the firm was decided at a general

meeting on April 22, 2009, and C III the date when Citigroup was downgraded by Moody’s

September 21, 2011. For C I and C III we see that the PoDs already signalled very high

risks in advance of these events, with levels of around 1800 basis points (BP) for C I and 800

BP for C III. With regard to C II, the decisions seemed to be expected (as PoDs decreased

some days before) and once they were actually made led to a sharp decline in investors’

risk perception. Added together, we see that the PoD time series are able to signal risks

concerning the entire financial sector (systemic risk) as well as firm specific (idiosyncratic)

12



risks in a timely manner.

To check our indicator’s predictive power in comparison to other existing indicators, we

compare our PoD time series to 5-year CDS since they are a very commonly used measure to

derive (risk neutral) probabilities of default for firms and countries. We consider it worthwhile

to examine the performances of our equity based default probabilities to the debt based

implied default risks of CDS.

In Figure 2, 5-year CDS for Citigroup are plotted against our PoD time series using two

different scales. It is obvious that both indicators exhibit very similar dynamics, which is

true for the time series of all considered institutions (see Figure 3, and Figures 9 and 10 in the

Appendix). Table 1 (Appendix) shows the Pearson and Spearman correlations between CDS

Figure 2: Time series of maturity corrected PoDs versus time series of 5-year CDS in basis
points for Citigroup from February 2002 to February 2012, using two different scales
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denote the collapse of Bear Stearns on March 16, 2008 and the Lehman Brothers bankruptcy on September 15, 2008,

respectively.

and the maturity corrected PoDs for the different financial institutions. Pearson correlations

are mostly around 70% whereas Spearman rank correlations are mostly above 80%. The size

of the correlations is extremely high, taking into account that CDS levels imply a default

13



evaluation over five years14 while our PoDs describe the possibility of default over six month

on average.

A different picture arises if we compare the levels of the PoDs and the CDS. These differ

considerably for all considered institutes, most strikingly in high distress times. Exemplarily,

this feature is highlighted in Figure 3, in which the PoD and CDS time series for Lehman

Brothers are plotted at the same scale. At the time of LEH’s bankruptcy, PoD values rose to

2500 BP whereas CDS values rose only to 700 BP. For other banks the differences are even

more severe (e.g. see Figure 2).

There is an obvious reason for these differences. In contrast to our PoD estimates, CDS

cannot be directly interpreted as probabilities of default, since derivatives on debt based

securities are a function of the recovery rate. Given a recovery rate unequal to zero, a CDS

spread implies a probability of default of a multiple of its amount.15 This fact severely

complicates the assessment of a firm’s resilience based on CDS, since recovery rates may

vary across time and firms (e.g. that means, an equal CDS level for two firms can imply two

totally different probabilities of default). Here we stress the great advantage of the equity

based PoD estimates for which larger indicator values always imply higher risk, no matter if

comparisons are made over time, firms or both.16

Taking into account the different interpretations of CDS and PoD levels, in the following we

evaluate the levels separately for each respective indicator. That is, we compare the indicators

only regarding their signalling power of high risk periods and high risk institutions. To do

so, it is important to know what can be regarded as a high/low value for the respective

indicator. From Table 2 (Appendix) we see that before the crisis (chosen start date for crisis:

July 2007) the average PoDs range from 2 BP for WFC to 29 BP for MS and average CDS

from 14 BP for BAC to 60 BP for MBI.17 The average values after July 2007 range for PoDs

from 61 BP for GS to 1135 BP for MBI and for CDS from 89 BP for PNC to 1162 BP for

MBI. Knowing this, we can now assess that the PoDs’ observed maximum values for LEH of

2500 BP and for C of even 5800 BP are extraordinarily high. In contrary, the maximal values

of CDS for LEH of 700 BP and for C of 600 BP are only about half as high as the average

CDS value for MBI after the crisis. Given LEH and C faced maximum financial distress at

14More precisely the CDS-levels exhibit information about the average yearly Probability of Default over
the next 5 years.

15In more resilient periods, however, CDS levels are in fact higher than our PoD levels. Here the effect of
differing maturities comes into play which dominates the recovery rate effect.

16Counterparty risk as well as government interventions (too-big-to-fail hypothesis) also drive a wedge
between PoD and CDS levels as they distort CDS spreads downwards (see Schweighard and Tsesmelidakis
(2012)).

17Only taking into account those banks for which CDS and PoDs are available.
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Figure 3: Time Series of maturity corrected PoDs versus time series of 5-year CDS in basis
points for Lehman Brothers from February 2002 to September 2008, using one scale
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September 15, 2008, respectively.

time of the respective maximum values, we obtain a first indication that CDS levels exhibit

less signalling power as the levels of the option iPoDs. One possible reason for the weak

signals of CDS levels might be differing assumed recovery rates for the different firms.18

In order to examine more thoroughly the risk levels indicated by CDS and PoDs, we next

apply a ‘relative risk analysis’. That is, we examine how large the level of a specific bank’s

indicator is relative to the indicator levels of the other banks in the system. To do so, we

derive in the next section a proxy for the systemic risk in the US financial sector.

5.2 Systemic Risk Measure

We derive a systematic measure of financial risk, that is based on separating the common

dynamic of all firms’ indicators from the individual indicator time series. This takes into

account that all banks display historically high indicator levels during crises periods and low

18Other reasons might be implied government guarantees or liquidity issues.
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levels in boom periods. Hence, we interpret this measure as a proxy for the systemic risk in

the overall US financial sector. We later use this proxy to identify especially risky banks in

relation to the systemic risk.

Given the strong similarities in the dynamics of our PoD series (see Figure 9 in the Ap-

pendix), there is strong evidence for some latent factor predominantly driving the pattern of

our dataset. We interpret this unobservable joint factor as systemic or financial sector risk.

To segregate the systematic risk of our PoD/CDS data from the banks’ individual idiosyn-

cratic risks we apply a principal component analysis (PCA) to our indicator time series and

regard the first principal component (PC) as a proxy for the overall financial sector risk.

The first PC represents that joint factor which mainly causes the correlation between the

variables and likewise explains the largest part of the variation in the dataset and is therefore

regarded as the driving force behind the common pattern underlying our data.

Since the first PC can be regarded as a linear combination of the optimally weighted PoD

data, our financial sector risk indicator is a weighted mean of our banks’ PoDs. The term

optimally refers to the fact that there exists no other set of weights that leads to a PC which

accounts for a larger amount of variance in the data. Thereby, we weigh these banks in the

sample the most which exhibit the highest percentage of the total variation and, hence, exert

the strongest influence on the overall financial sector risk.

Due to data restrictions we could not use the complete set of banks to calculate our PCs. For

the PC of the PoDs we used GS, WFC, C, BAC, JPM, AIG, MS, MBI, PNC and STT. No

data are available for LEH, BSC, WB, MER, CFC and WM after their takeover or default

and also BLK, BX and BK contain too many missing values. For the CDS we took GS,

WFC, C, BAC, AIG, MS and MBI for the same reasons just explained. We found that all

eigenvector elements are positive and that the first PC of our PoD data explains 79.21% of

the total variation and the first PC of the CDS explains 83.66% of the overall variance in

the dataset. Given that high explanatory power, we consider the first PC as an appropriate

proxy for the systemic risk inherent in the financial sector.

The PCs of our PoD and CDS series are depicted in Figure 4.19 As for the individual bank

time series, the CDS and PoD based PCs exhibit highly similar dynamics but differ sig-

19Beforehand, we tested our PoD and CDS series for unit roots (results available upon request). We found
that except for the ’crisis banks’ which went bankcrupt or were taken over during 2008 (LEH, BSC, WB,
MER, CFC and WM), the series are significantly stationary. The crisis banks’ indicators, though, rose to
very high levels shortly before failure and then abruptly ended, hence, pointing towards unit root behaviour.
Nonetheless, theoretically it is hard to justify that the CDS and PoD series are non-stationary. If the series
were not mean-reverting, very high values lasting over a lengthy period of time would sooner or later trigger
default of the respective company.
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Figure 4: Systemic risk of PoD and CDS series measured in basis points from February 2002
to February 2012
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nificantly in their level during high distress times. Both indicators clearly indicate the late

consequences of the early 2000s recession, the takeover of Bear Stearns by JPM on March

16, 2008, Lehman Brother’s bankruptcy on September 15, 2008 as well as the worsening

conditions in the wake of the European sovereign debt crisis. This shows that the proxies

significantly cover the incisive events in the US financial system and, more importantly, the

magnified risk prior to the events.20

In order to have a closer look at the dynamics of the systemic risk proxy, Figure 5 focuses

solely on the crisis period. Important events during the financial crisis are highlighted in or-

der to further back up the signalling power of the indicators. BSC I marks the Bear Stearns

20Figure 11 (Appendix) shows that the above mentioned properties do not hinge on the exact choice of
banks used for the PC determination. In Figure 11, we used the same specification of banks for the PC
determination of the PoDs as used for the PC of the CDS. The first PC of the PoDs explains 72.28% of the
total variation in the data, still a very high percentage.

17



Figure 5: Systemic risk of PoD and CDS series measured in basis points from January 2007
to April 2009
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hedge fund troubles of mid-2007, which were the first forerunners of the financial crisis. CFC

I represents the announcement of the Countrywide takeover by BAC on January 11, 2008,

BSC II denotes the Bear Stearns takeover by JPM on March 16, 2008 and CFC II stands for

the Countrywide acquisition by BAC on June 25, 2008. All four events were accompanied by

a significant increase in the systemic risk proxies. More importantly, worsened financial con-

ditions were signalled in advance of the specified events. The biggest surge in the indicator

took place in the course of Lehman Brothers bankruptcy (LEH event), the BAC announce-

ment of the Merrill Lynch purchase on September 14, 2008 (MER event) and the bailout of

AIG by the Federal Reserve Bank of New York on September 16, 2008 (AIG event). Shortly

after the bankruptcy of Washington Mutual on September 26, 2008 (WM event) as well as

the first announcement of the acquisition of Wachovia by C on September 29, 2008 (WB
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event) market conditions even further worsened as indicated by the systemic risk measures.

5.3 Relative Risk Analysis

As we could see that the proxy for the systemic risk in the US financial sector provides

very conclusive results, we apply this measure to carry out our relative risk analysis. Figure

6 depicts exemplarily the PoD and CDS series of LEH and WM relative to the systemic

risk. We consider a period of six months prior to the Lehman event in order to evaluate the

predictive power of our financial stability indicator in advance of severe events. Therefore,

we subtract the financial sector risk component from the original PoD and CDS series of the

respective companies and gain a ’relative risk spread’ measured in basis points.21 This spread

indicates whether a company’s distress level is considered to be higher or lower compared to

the prevailing overall financial sector risk. The upper graph of Figure 6 exhibits the relative

Figure 6: PoD and CDS series relative to systemic risk six month prior to the Lehman event
on September 15, 2008; measured in basis points
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risk spread for the PoD and CDS series of LEH. As illustrated by the zero line, the relative

21For the sake of consistency, for the systemic risk calculation we used in this case the same bank sample
for the PoDs as for the CDS. However, results remain unchanged if we used the PoD sample of section 5.2.
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PoD time series moves constantly around zero but exceeds that value in July 2008, two and a

half months before the actual collapse of LEH. Hence, way in advance of the bankruptcy, our

indicator is able to signal in relative terms the increased default risk. One trading day before

failure, the risk spread even rose to around 29.5%, implying a default probability which is

29.5 percentage points higher than that of the average overall financial sector. In contrast,

the CDS spread remains negative over the complete sample, which implies LEH’s distress

level to be below the systemic one. This clearly underestimates LEH’s inherent default risk

especially with regard to the looming insolvency.

The lower graph of Figure 6 depicts the relative PoD and CDS time series for WM. Here,

both curves signal a relative risk level above the systemic one in the latter part of the sample,

which is plausible since WM collapsed on September 26, 2008. However, the PoD spreads are

positive over the complete sample, whereas the CDS curve does not cross the zero line before

the end of July 2008. In addition, the absolute values of PoD spreads are decisively higher

than the CDS ones. These results again back the hypothesis of higher signalling power in

the option implied stability measure.

Table 3 (Appendix) provides an overview of the relative riskiness of the remaining financial

institutions in our sample. We aggregated the information by taking the average of the PoD

and CDS spreads for each institution over an interval of one to ten days, ten to twenty days,

twenty to forty days and thirty to sixty days prior to the Lehman event. The results substan-

tiate the findings from above that the PoDs are superior to the CDS in identifying the most

financially troubled institutions prior to Lehman Brother’s breakdown (see highlighted LEH,

WB, MER, WM and AIG). In a consistent manner, the PoD spreads of the most resilient

banks like GS, WFC and JPM exhibit negative spreads since these institutions weathered

the financial turmoils quite well.22

6 Conclusion

In this paper we applied the so-called option iPoD methodology to a dataset of option prices

for 19 of the largest US financial institutions, ranging from February 2002 to February 2012.

We showed how to empirically implement the framework in order to obtain consistent and

smooth time series of option implied Probability of Defaults (iPoDs). This was achieved by

22We also analyzed our PoD and CDS data in relation to the most resilient bank and to the own history
of each particular institution. The results are fully in line with the findings in this section and speak as well
in favour of our derived financial stability indicator. Results are available upon request.
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the appropriate choice of liquidity weights and the use of a suitable maturity cycle. To obtain

the time series of RND/PoD estimates, alternately five-, six-, and seven month call option

contracts were used. Subsequently, maturity dependence in the time series was removed by

applying a non-parametric quantile regression approach to the pooled PoDs.

The time series of PoDs for the different financial institutions were comprehensively evaluated

regarding their signalling/predictive power in advance and during crises periods. To do so,

we contrasted our indicators to historical events and to time series of 5-year CDS. We found

that the iPoD estimates signal very well the occurrence of adverse shocks to the financial

sector as a whole as well as to specific financial institutions - in most cases prior to the

actual events. Comparisons between 5-year CDS and the option iPoDs showed that both

indicators exhibit highly similar dynamics but differ strongly in their levels. We stressed

that the differences in the levels are mostly due to the fact, that unlike the option iPoDs,

CDS spreads are functions of unknown recovery rates, and that this fact makes the iPoDs

a superior financial stability indicator. To prove this we evaluated the signalling power of

the two indicators in the identification of the most distressed/resilient banks in advance of

Lehman Brother’s bankruptcy.

In order to carry out this evaluation, we examined the bank-specific indicator levels relative

to the prevailing systemic risk in the US-financial sector. The proxy for the systemic risk was

calculated by applying a Principal Component Analysis to the time series of PoDs/CDS. As

shown, this proxy provides a valuable self contained financial stability measure, that gives

distinct signals regarding the stability of the US financial sector.

The risk analysis relative to the systemic risk proxy finally showed that the iPoD approach

was able to identify the high risk banks in advance of the Lehman Brother’s bankruptcy and

clearly outperformed the CDS in this context.

Given the results from the empirical analyses, we stress the high informational content of

the option iPoD framework and its ability to provide valuable risk measures. Importantly,

the amount of information provided by the methodology is not restricted to the PoDs, but

also provides the corresponding RNDs. The plausibility of the PoD estimates evaluated in

this paper, implicitly ensures that also the RNDs provided by the framework are plausible,

as the PoDs are a function in the RND shape parameters. The framework is hence highly

attractive for usage in multivariate - copula based - risk analyses, in which joint PoDs and

joint asset distributions can be derived.
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Appendix

Figure 7: 40%- and 90%-Quantile of the PoDs for different time to maturities and the respec-
tive fitted functions
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