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Abstract 

 

Evaluating multiple sources of risk is an important problem with many applications in 

finance and economics. In practice this evaluation remains challenging. We propose a 

simple non-parametric framework with several economic and statistical applications. In 

an empirical study, we illustrate the flexibility of our technique by applying it to the 

evaluation of multidimensional density forecasts, multidimensional Value at Risk and 

dependence in risk.  
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1. Introduction 

Most of the financial literature assumes that two considerations are of utmost importance 

for an investor: the reward that may be attainable and the inherent risk in obtaining this 

reward. The trade-off between reward and risk is the essence of any investment strategy. 

While it is straightforward to approximate the reward by the return on the investment, the 

definition of risk is more ambivalent since it involves quantifying various sources of 

uncertainty about the future investment value. 

 

Conceptually, risk is the potential for (adverse) deviation from expected results. Different 

proxies for risk have been proposed, where perhaps the most popular in the univariate 

context is the variability of returns, as measured by the variance. If returns are not drawn 

from a normal distribution, then variance is no longer an appropriate measure of risk 

because it fails to capture some of the characteristics of the return distribution that 

investors consider important. An alternative univariate risk measure is the Value at Risk 

(VaR), which is defined as the maximum loss on a portfolio over a certain period of time 

that can be expected with a nominal probability. When returns are normally distributed, 

the VaR of a portfolio is a simple function of the variance of the portfolio (Szegö, 2002). 

However, when the return distribution is non-normal, as is now the general consensus, 

the VaR of a portfolio is determined not just by the portfolio variance but by the entire 

conditional density of returns, including skewness and kurtosis (see Tay and Wallis, 

2000). 
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Risk management, generally, involves more than one risky asset and is particularly 

concerned with the evaluation and balancing of the impact of various risk factors. If the 

joint distribution of asset returns is multinormal, then the correlation coefficient adequately 

captures the dependence between assets (see Diebold et al., 1999). However, joint 

normality is not supported by empirical evidence (see, for example, Patton, 2004). 

Moreover, correlation is only a measure of linear dependence and suffers from a number of 

limitations (see Embrechts et al., 2002; Patton, 2004). These deficiencies are compounded 

in the covariance measure which is an explicit function of the individual variables 

variances and their correlation. The overreliance on covariances can have detrimental 

consequences as they are an essential input in many financial applications including 

hedging and portfolio decisions. Indeed, Embrechts et al. (2002) warn that unreliable risk 

management systems are being built using correlations – and by extension covariances – to 

model dependencies between highly non-normal risks. 

 

While in the univariate context, the shortcomings of variance as a risk measure have been 

mostly addressed by VaR, the financial literature that explicitly addresses the shortcomings 

of the covariance as a measure of co-dependence is still in its infancy. Failure to properly 

characterize the relationships and inter-dependence of the multiple risk factors can have 

severe consequences as demonstrated by the recent failure of the rating agencies to account 

for house price risk when rating structured products (Gorton, 2010). Moreover, while the 

financial literature is replete with techniques which model the dependence in return (e.g. 

CAPM, APT), the equally important matter of the dependence in risk has only recently 

come to attention (see Patton, 2009). 
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This paper makes the following contributions to the nascent literature on multi-factor risk. 

Firstly, it proposes a simple and flexible statistical framework to evaluate time-varying, 

density forecasts of multidimensional risks. Secondly, VaR is generalized in a natural way. 

Essentially, multidimensional Value at Risk (MVaR) is a region of the intersection of 

univariate VaRs with a nominal probability mass under a given density function.  It turns 

out that MVaR is a versatile framework that allows for examining and evaluating the 

dependence in risk. MVaR can also be seen as a straightforward illustration of the multiple 

sources of risk: If VaR is a univariate risk measure, which instead of the variance takes into 

account the entire tail density, then MVaR is a measure of multidimensional risk that 

instead of the covariances takes into account the entire distribution in the relevant joint tail. 

 

The outline of the remainder of this paper is as follows. In Section 2, we present an 

economic motivation for MVaR, while in Section 3 we discuss the concept of joint 

density tails.  In Section 4, we illustrate the application of this framework to 

multidimensional density forecasts (MDF) evaluation. Section 5 introduces MVaR and 

discusses its various statistical and economic interpretations, while Section 6 applies the 

MVaR framework to the measurement of the dependence in risk. Section 7 presents a 

small empirical study to illustrate these concepts. Finally, Section 8 concludes. 

 

2. Motivation for Multidimensional Risk 

Effective risk management requires not only correct identification of the sources of risk 

but also an adequate capturing of their distributional characteristics. Examples of the 

importance of properly accounting for the multiple sources of risk come from the 
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financial economics literature. A major contribution to this literature, the Capital Asset 

Pricing Model (CAPM), models asset returns by decomposing their variability into 

market risk and firm-specific effects that can be diversified away in large portfolios. In 

this model, the return on the market portfolio summarises the broad impact of 

macroeconomic factors. However, often rather than using a market proxy, it is more 

enlightening to focus directly on the ultimate, individual sources of risk. This can be 

useful in risk assessment, when measuring exposures to particular sources of uncertainty. 

Arbitrage Pricing Theory (APT) shows how a decomposition of risk into systematic and 

idiosyncratic influences can be extended to deal with the multifaceted nature of 

systematic risk. Multifactor models can be used to measure and manage exposure to each 

of the multiple economy-wide risk factors such as, e.g. business-cycle risk, inflation, 

interest and exchange rate risk and energy price risk (see, for example, Ferson and 

Harvey, 1994; Chan et al., 1998). 

 

The recent financial crisis brought to the forefront of attention systemic risk. This is the 

risk of collapse faced by the financial system as a whole when one of its constituent parts 

gets into financial distress. Due to the interconnectivity of the financial institutions, a 

shock faced by one institution in the form of an extreme event, increases the probability 

other financial institutions experiencing similar extreme events, leading to a domino 

effect (see Gai and Kapadia, 2010; Nijskens and Wagner, 2011). At the individual level, 

financial institutions are subject to three types of risk: market, credit and operational risk. 

For example, market risk typically generates portfolio value distributions that are often 

approximated as normal. Credit and especially operational risk generate more skewed 
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distributions due to occasional extreme losses. For examples of market risk, see Jorion 

(2001). Crouhy et al. (2001) give examples of all three risk types while Kuritzkes et al. 

(2003) present stylized pictures of a very broad range of risk types that are faced by large 

financial companies. In recent years, there has been increasing concern among 

researchers, practitioners and regulators over the evaluation of models of financial risk. 

Moreover, while it is important to have an aggregate measure of the total risk, often it is 

also important to know the direct dependence on, and inter-relationships of, the specific 

market, credit and operational sources of risk. These developments accentuate the need 

for evaluation techniques that are flexible and yet powerful (Lopez and Saidenberg, 

2000). 

 

While the literature on aggregating the multiple sources of risk is recently gaining 

momentum (see, for example, Rosenberg and Schuermann, 2006), there appears to be 

virtually no research into the joint evaluation of such sources of risk or to characterize 

their inter-dependence. Moreover, while some risk types are more easily characterized 

and measured than others, much less is known about their joint behaviour, distributional 

characteristics and cross-influences (see, for example, Chollete et al., 2011). By focusing 

on the joint distribution of the individual sources of risks, we provide a framework to 

characterise the co-dependence of these risks. It is important to emphasize that such a 

framework is not merely statistically interesting. As demonstrated by the recent financial 

crisis, financial institutions and regulators are in fact concerned with the possibility that 

their risk models do not adequately describe tail events. Indeed, a type of model failure of 



7 
 

particular interest to financial institutions and regulators is that in which the forecasted 

probabilities of large losses are inaccurate or worse, underestimated.1 

 

3. Joint Density Tails 

In this section, we introduce definitions that will be used throughout the paper. A joint 

density tail (JDT) is an unbounded region of the Euclidean space that is marked off by 

cut-off values. A parsimonious definition of the JDT �(�, �) in the N-dimensional linear 

space ��  over the real line �  requires only one cut-off value � ∈ �  and a directional 

vector  � ∈ �� as illustrated in Figure 1,  

 

�(�, �) ∶= �
 ∈ ��: 
�/�� ≥ �, ∀�� ≠ 0�   (1) 

 

[Figure 1] 

 

For instance, if � = 2, � = (1,0) and	� = 0, then �(�, �) is the half-plane containing all 

points with non-negative first coordinates. It follows directly from definition (1) that 

�(�, �) is an intersection of univariate tails, 

 

�(�, �) = � �(����, �)
�:����

 

                                                 
1 When the Federal Reserve Chairman Ben Bernanke was asked by the Financial Crisis Inquiry 
Commission what academic papers he recommends reading about the financial crisis and its 
aftermath, he suggested, among others, a paper by Adrian and Brunnermeier (2009), which 
proposes CoVaR (“Co” stands for conditional, contagion, or co-movement) as a way to measure a 
firm’s systemic risk (see http://blogs.wsj.com/deals/2010/09/02/ben-bernankes-labor-day-
reading-list/). CoVaR is a nested measure of our MVaR framework. 
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where �� is the unit vector in direction  = 1, … , �	 and �(����, �) is a half-hyperspace in 

��.  

 

Given an �-dimensional probability density function (PDF) ", the probability mass of the 

JDT �(�, �) under " is computed  as 

 

#�(�, ") =$% … % % … % "(&', … , &�)�() … �(*
+
,+

+
,+

�-+
�-.

�*+
�*. $    (2) 

 

where we first integrate over the entire real line for the variables &', … &/,' with �' = ⋯ =
�/,' = 0. Given a line in �� along the directional vector � ∈ ��, we define the following 

projection 1� of the point 1 ∈ �� on this line, 

 

1� = ��(1) · � where  ��(1) = min�����1�/���      (3) 

 

The point 1 is projected along the axis   that corresponds to the minimum ratio 1�/��. The 

next proposition states that the projection 1� of a point 1 that lies inside (outside) of the 

JDT �(�, �), stays inside (outside) this JDT.  

 

Proposition 1: For a directional vector � ∈ ��, � ≠ 0, and � ∈ �,  

 

   1 ∈ �(�, �) ⟺ 1� ∈ �(�, �)         (4) 
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Figure 2 presents an intuitive proof of this proposition, while the formal proof is given in 

the Appendix.  

[Figure 2] 

 

The JDT definition (1) is of fundamental importance for our measures of MVaR, risk 

dependence and for risk forecasting, while Proposition 1 is crucial for a systematic 

evaluation of these concepts. Unlike other measures of multidimensional risk (e.g., 

Embrechts and Puccetti, 2006), we focus on risk along a pre-specified direction as 

expressed by the directional vector2 �.  The first advantage of this approach is that it 

reduces a multidimensional problem to a unidimensional one, which then allows for the 

application of the well-known techniques of risk evaluation. In particular, the univariate 

VaR will be obtained as a special case. Secondly, its flexibility means that risk can be 

evaluated over specific areas as defined by the user’s interest. For example, an investor 

who is exposed to a subset of assets is more interested in the joint probability of extreme 

events involving these assets than in an overall measure of market risk. Thus, our model 

does not impose any constraints on the choice of the directional vector. This decision 

pertains to the user who tailors the directional vector according to their particular interest. 

 

4. Multidimensional Density Forecast Evaluation  

Our first application of Proposition 1 is the evaluation of time-varying multidimensional 

densities. Recently, the trend in the finance and economics literature is decisively towards 

                                                 
2  The directional vector �  has a distinct financial interpretation. For example, suppose a 
hypothetical investor holds a portfolio that is long two units in Asset 1 and short one unit in Asset 
2. Then, a directional vector of particular interest for this investor is � = (�', �8)′ = (2, −1)′ as 
it succinctly represents his portfolio in �8 space.  
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joint density forecasting.3 The increasing importance of forecasts of the entire conditional 

joint density naturally raises the issue of forecast evaluation. The relevant literature, 

although developing at a fast pace, is still in its infancy. This is somewhat surprising 

considering that the crucial tools date back a few decades. Rosenblatt (1952) showed that 

for the cumulative distribution function CDF ;<	 (PDF "<), which correctly forecasts the 

true data generating process (DGP) for the random variable =<, the probability integral 

transformation (PIT) >< = ;<(=<)  is i.i.d. ?[0,1]  over B . Therefore, the adequacy of 

forecasts can be easily evaluated by examining the �#< = ;<(1<)�<C'D  series for violations 

of independence and uniformity. 

 

The PIT idea is extended to the multivariate case by Diebold et al. (1999). Their test 

procedure factors each period’s MDF into the product of the conditionals and obtains the 

PIT for each conditional distribution. As a result, this procedure generates a PIT series for 

each conditional and the generated series can be tested for violations of independence and 

uniformity individually and as a whole. Rejecting the null of i.i.d. ?[0,1] for any series 

implies that the MDF is misspecified (see also Clements and Smith, 2000, 2002). 

However, these approaches rely on the factorization of each period forecasts into their 

conditionals, which may be impractical for some applications, such as for numerical 

approximations of MDFs often employed in finance (see the survey of Corradi and 

Swanson, 2006). 

                                                 
3 See, for example, the recent issue on copulas and multivariate distributions in the European 
Journal of Finance (2009), 15(7&8) and the references therein. See also the Special Issue on 
Density Forecasting in Economics and Finance in the Journal of Forecasting (2000), 19, 231–
392. 
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Our Proposition 1 implies that the potentially cumbersome factorization of a MDF can be 

circumvented and uniformly distributed scores can be obtained by exploiting the 

properties of projection (3). Specifically, our JDT-test4 uses the projection 1� = ��(1) ⋅
�  of the original observation 1 ∈ ��  to compute the corresponding score as the 

probability mass (2) over the induced JDT �(�, ��(1)), where ��(1) = min�����1�/���. 

In the Appendix, we prove the following result. 

 

Corollary 1: If the sequence of time-varying CDFs �;<�<C'D  is the true DGP for the 

sequence �=<�<C'D  of � -dimensional random variables =< = (=',<, … , =�,<) , then the z-

scores �><� = ;<(��(=<))�<C'D , where ��(=<) = min����F=�,</��G and � ∈ �� , � ≠ 0, are 

i.i.d. ?[0,1] over B.  
 

Note that for unidimensional forecasts our procedure reduces to the traditional PIT. 

Importantly, the proposed procedure effectively transforms a CDF ;< into a unidimensional 

random score variable. Further, the corollary implies that the null hypothesis of the overall 

accuracy of a density model can be tested by the standard tests of uniformity (see Noceti et 

al., 2003) and independence (see Brock et al., 1991). When rejecting the null, we can 

dismiss the density model as inaccurate. Acceptance, on the other hand, means that the 

density specification is compatible with the sample, when verified along the directional 

vector � ∈ ��. We discuss the issue of parameter estimation uncertainty in the Appendix.  

 

 

                                                 
4 Due to the focus on the joint density tails, we call our procedure the JDT-test. 
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5. Multidimensional Value at Risk  

The unidimensional Value at Risk (VaR) is now one of the most widely used measures of 

tail risk among practitioners, largely due to its adoption by the Basel Committee on 

Banking Regulation (1996) for the assessment of the risk of the proprietary trading books 

of banks and its use in setting risk capital requirements (see Gourieroux and Jasiak, 2010). 

For the unidimensional continuous CDF ;< (PDF "<), the VaR at the nominal level H is the 

quantile �I  for which ;<(�I) = H. From the VaR definition follows that the probability 

mass (2) under "< of the interval �
 ∈ �: 
 ≤ �I� is equal to the nominal level H. 

 

In analogy to VaR, we define the multidimensional Value at Risk in direction � ∈ �� at 

the nominal level H (KLH�I
�) as the cut-off value  ��(", H) ∈ � such that the probability 

mass (2) under " of the JDT �(�, ��(", H)) is equal to the nominal level H. However, we 

will often identify the KLH�I
� -value ��(", H) also with the JDT �(�, ��(", H)). Then, 

depending on the context, we will refer to KLH�I
�  either as a (probabilistic) event               

or as a set. The boundary of the latter set in direction  = 1, … , � is defined by the value 

��(", H) ⋅ ��, where �� ≠ 0. We will say that 1 ∈ �� is an extreme observation, whenever 

the projection ��(1) of 1 exceeds (violates) the threshold ��(", H) or, equivalently, when 

1 falls into the set KLH�I
�, 

 

��(1) ≥ ��(", H) ⇔ 1 ∈ KLH�I
�   (5) 
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Note that the equivalence of these two events follows from Proposition 1. Due to the 

decomposition of JDTs into univariate tails, KLH�I
�-set can be seen as an intersection of 

univariate VaRs, as illustrated in Figure 3 for a bivariate distribution. 

 

[Figure 3] 

 

It is important to note that our MVaR definition differs in important ways from the MVaR 

measure introduced in Embrechts and Puccetti (2006). They define the multivariate lower-

orthant (LO-)VaR as LH�I(;) ≔ O�1 ∈ ��: ;(1) ≤ H� . In spite of its mathematical 

appeal, their measure is of limited use for our purposes. Most importantly, the probability 

under the MDF ; of the region �1 ∈ ��: ;(1) ≤ H�, i.e., where the LO-VaR is exceeded, is 

generally not equal to H  when � > 1. Therefore, it is not clear how the LO-VaR can be 

evaluated in empirical applications. Further, and unlike MVaR defined in this paper, it is 

not clear how LOVaR can be adapted to measure risk dependence (see Section 6 below). 

Similar observations apply to the second multivariate risk measure, introduced in 

Embrechts and Puccetti (2006), the upper-orthant (UO-)VaR.  

 

In spite of their conceptual simplicity, working directly with MVaRs can prove 

challenging in higher dimensions. However, we will show that the relevant MVaR 

inference can be more easily obtained from the #<
�-scores. Specifically, for the projection 

1� = ��(1) ⋅ � of observation 1, we will compute its #<
�-score as the probability mass 

(2) under "  of the corresponding JDT �(�, ��(1)) . Our next result (proved in the 

Appendix) characterizes the score values of observations in the KLH�I
�. 
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Corollary 2:  For a continuous PDF ", a directional vector � ∈ ��, � ≠ 0, and a nominal 

significance level H ∈ (0,1),  

 

   1 ∈ KLH�I
� ⇔ #�(��(1), ") ≤ H   (6) 

 

An important application of Corollary 2 is the evaluation of MVaR forecasts for a given 

sequence of time-varying density forecasts F"Q<,'G
<C'

D
 based on a sequence of 

multidimensional observations �1<�<C'
D . Corollary 2 implies that, under the correct 

forecasting model, the proportion of #<
� -scores, computed for �1<�<C'

D  and with values 

below H, should approach the nominal significance level H for a sufficiently large sample. 

We refer to this procedure as unconditional accuracy. On the other hand, the conditional 

accuracy requires that the number of scores with values less than H should be unpredictable 

when conditioned on the available information. In other words, the KLH�I
� violations (i.e. 

extreme observations whose projections along the vector � exceed the KLH�I
� threshold) 

should be serially uncorrelated. Thus, if the forecasting model is correct, an extreme 

observation today should contain no information as to whether an extreme observation will 

occur tomorrow. To assess both types of accuracy, we can resort to the unconditional 

accuracy test of Kupiec (1995) and the conditional accuracy test of Christoffersen (1998). 

Although both tests are designed for testing the univariate VaR accuracy, they still apply 

for our purposes because the score computation effectively converts a MDF into a 

univariate score variable. 
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5.1 The Interpretation of MVaR as a Risk Distribution Measure 

In the Introduction, we noted that variance is an inadequate risk measure if the return 

distribution is non-normal. If this is the case, then an adequate risk measure must 

incorporate all the characteristics that define the return distribution. As such, VaR 

addresses the shortcomings of the variance as it incorporates the entire tail distribution. In 

analogy, MVaR can be interpreted as a measure of multidimensional risk that takes into 

account the entire density in a JDT. Further, MVaR leads naturally to a risk distribution 

function (RDF). An RDF can be constructed for � risk factors R', … , R�  with the joint 

PDF  " when the payoff of an agent depends on the standardized factors R'/�'	, … , R�/
�� . The standardization can account for, e.g., different units or variances of the risk 

factors. Then, the following definition of the RDF for this agent,  

 

         S(�; �) = UVW(�(�, −�))  where  �(�, −�) ∶= �
 ∈ ��: 
�/�� ≥ −�, ∀�� ≠ 0	� 

 

satisfies the conditions of a CDF: S(−∞; �) = 0 , S(∞; �) = 1  and S(�; �)  non-

decreasing in the first argument. The RDF S(�; �) is the probability that all standardized 

risk factors exceed the critical level	� simultaneously. For an observation 1, we can also 

compute the cut-off value ��(1). If the latter value exceeds (or violates) ��(", H), a risk 

event at significance level H has occurred. 

 

6. Dependence in Risk 

In this section, we define two risk dependence measures that rely on the MVaR 

framework. The first one is the relative change in the probability of KLH�I�, given that 
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KLH�IY
�Z , � ≠ �[, has occurred. Specifically, for the multidimensional random variable � 

with the joint PDF ", 

\IY
I]", �, �[^ ≔ UVW]� ∈ KLH�I

�_� ∈ KLH�IY
�Z^ =

UVW(KLH�I
� ∩ KLH�IY

�Z)

UVW(KLH�IY
�Z)

 

 

is the conditional probability of the KLH�I
�-event, given the occurrence of KLH�IY

�Z .  

By the definition of statistical independence, it holds in the special case H = HY that, 

 

\I
I]", �, �[^ = UVW(KLH�I

�) = H    

 

when the events KLH�I
�  and KLH�I

�Z  are independent. Therefore, we can express the 

degree of dependence between these events by the relative change in conditional 

probability, 

																								aI]", �, �[^ = aI]", �[, �^ ≔ ]\I]", �, �[^ − H^/H   (7) 

 

which is equal to zero when KLH�I�  and KLH�I�
Z  are independent.5 Positive values of 

aI(", �, �[) indicate that the occurrence of KLH�I�
Z  increases the probability of KLH�I�, 

while negative values indicate the opposite. Note that changes in the nominal level H do 

not affect aI(", �, �[	) as long as the ratio \I(", �, �[	)/H remains constant, 

 

                                                 
5 An alternative dependence measure can be defined as   

abI]", �, �[^ ≔ ]\I]", �, �[^ − H^ ]\I]", �, �[^ + H^d  
The benefit of this measure is that it is normalized to lie between -1 and 1, while it attains the 
value of zero when KLH�I� and KLH�I�

Z are independent.  
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\I	(", �, �[	)/H = \IY 	(", �, �[	)/HY ⇒ aI 	(", �, �[	) = aIY 		(", �, �[) 
 

Our second dependence in risk measure, conditional MVaR (CMVaR), is similar to 

CoVaR in Adrian and Brunnermeier (2009) and is defined as the relative change in the 

KLH�I�-value when conditioned on the KLH�I�
Z-event, 

 

																										fKLH�I
�,�Z = g��]"_KLH�I�

Z , H^ − ��(", H)h /|��(", H)|            (8) 

 

where ��(", H)  is computed with respect to the PDF "  while ��("|KLH�I�
Z , H)  is 

computed with respect to the conditional PDF "|KLH�I�
Z , i.e., with respect to the 

normalized density "  over KLH�I�
Z . This measure indicates the relative change in the 

KLH�I�-value, when conditioned on the occurrence of KLH�I�
Z . If the latter event has no 

impact on KLH�I� , then fKLH�I
�,�Z  is equal to zero. On the other hand, positive 

(negative) values of fKLH�I
�,�Z  indicate that the conditioning increases (decreases) the 

risk, as measured by KLH�I� . Note that CMVaR can also be employed to measure 

systemic risk and contagion. For example, if MVaR-value ��(", H)  measures the 

unconditional risk of a financial system, then fKLH�I
�,�Z may capture the exposure of this 

system to an institution, represented by �[, experiencing the extreme event KLH�I�
Z .  

 

The dependence measures can be computed either from a theoretical density function " or 

from observations that define an empirical distribution "j . The task is simplified in the 

latter case as multidimensional integration in the calculation of MVaR-values from the 
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PDF " is replaced by the computation of the corresponding quantiles for unidimensional 

projections (3) of observations in "j along directional vectors.6  

 

For example, in order to compute UVWk(� ∈ KLH�I
�|� ∈ KLH�IY

�Z) , we first select the 

KLH�I
�  (KLH�IY

�Z ) to contain the proportion H (HY) of observations in "j  with the largest 

projections on the line along the directional vector � (�[). Then, we compute the empirical 

conditional probability from the number of observations in the intersection KLH�I
� ∩

KLH�IY
�Z  over the number of observations in KLH�IY

�Z . We can compute fKLH�I
�,�Z  in a 

similar manner. Importantly, these computations can be performed efficiently in higher 

dimensions and for large samples. Therefore, aI(", �, �[) and fKLH�I
�,�Z  are convenient 

and robust non-parametric tools for analyzing dependence in multidimensional data.  

 

7. Empirical Illustration of the MVaR Framework 

In this section, we present a small empirical study to illustrate the evaluation and 

measurement of the multiple sources of risk in the proposed framework. We employed 

three-dimensional observations composed of the daily log returns for the S&P 500 stock 

index, the spot index of a basket of commodities computed by the Commodities Research 

Bureau CRB and the GBP/USD exchange rate (SP, CI and DP hereafter). The data were 

obtained from Datastream7 and cover the period 3 January 1972 to 14 September 2010 

10097 synchronized daily observations. 

                                                 
6 Note that the observation 1' is more extreme (in direction �) than the observation 18 if and only 
if ��(1') > ��(18). 
7 Datastream provides global financial and macroeconomic data and is owned by Thomson 
Reuters. For details see http://thomsonreuters.com/  
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We interpret the three variables as representing different sources of risk originating in the 

domestic, commodities and foreign exchange markets respectively. Table 1 presents 

summary statistics for the continuously compounded daily returns for the three 

synchronized time series. All mean returns are close to zero and there is a weak positive 

correlation between the factors. In line with previous evidence, the distribution of daily 

returns is heavily leptokurtic. 

 

[Table 1] 

 

In the first part of the experiment, we test the accuracy of two parametric distributions – 

the multinormal (MN) and the multivariate t-distribution (MT) – and the accuracy of the 

adaptive empirical distribution (AED). All specifications are time-varying. The details of 

the dynamic estimation of the parametric distributions via a multivariate GARCH model 

are given in the Appendix. 

 

We use the observations 3001 to 10097 to compute the #<
� -scores for all three 

specifications (the first 3000 observations were used for the initial estimation). The #<
�-

scores are computed in directions that are proportional to the standard deviations lmn, lop 

and lqn  of the respective sample returns. For example, KLH�I
�  in direction � = 

(lmn,lop , lqn) contains all observations whose projections exceed ��(", H), where " is 

either the MN, MT or the AED and H is the nominal significance level. Although our 

choice of the directional vector serves only as an illustration of the techniques involved, 
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we made it proportional to the empirical standard deviations of the risk sources for the 

sake of normalization and, hence, comparability of these risks. 

 

The results of the experiment are reported in Table 2. First, we focus on the overall 

accuracy of the three specifications by computing the p-values of the uniformity test for 

the z-scores (numbers in bold). For all distributions and along all tested directions, the p-

values are essentially equal to zero, which implies that the data is not generated from any 

of the specifications. Note that for the directional vectors (lmn , 0,0) and −(0, lop , 0), we 

effectively test the null that the factors SP and CI were generated by the respective 

marginals of MN, MT and AED.  

 

[Table 2] 

 

Comparing the MVaR accuracy of the different models reveals that at low significance 

levels only the MT can approximate the true DGP. Given the estimate of 2.7 for the 

degrees of freedom i.e. the relatively thick tails, this finding confirms the universality of 

the approximately cubic law for extreme returns (see Gopikrishnan et al., 1998) in the 

multivariate context. On the other hand, AED is the model of choice at high significance 

levels. Interestingly, the example of the directional vector −(lmn, lop , lqn) shows that 

extreme simultaneous decreases cannot be estimated reliably from past observations. 

More precisely, the probabilities of such extreme events will be consistently 

underestimated – a potentially severe problem for risk management – as illustrated by the 

fact that the AED leads to the proportion of z-scores with frequencies of observations less 
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than or equal to H that is far above this nominal level H. This finding suggests that the 

probability of all negative extreme events has increased steadily since 1972 i.e., during 

our sampling period. 

 

The second part of our empirical study focuses on MVaR risk dependence measures and 

uses the same observations on S&P 500 index, CRB index and the GBP/USD exchange 

rate as the accuracy tests. We refer to this data as Sample A. In addition, we compute the 

dependence measures for synthetic data (Sample B) that was drawn from a three-

dimensional multinormal with the same parameters as Sample A. In Table 3, we report 

for each nominal level H and vectors � and �[, the dependence coefficient, CMVaR and 

the tail correlation. The latter is computed as the correlation coefficient for observations 

in the relevant joint density tail. It quantifies the linear dependence of variables in this 

tail (see Longin and Solnik, 2001). 

 

[Table 3] 

 

We observe that the CMVaR decreases in H in Sample A while it tends to increase in the 

synthetic Sample B, although the former CMVaR is always significantly higher than the 

latter. In particular, for the directional vectors � = −(0, lop , 0) , �[ = −(lmn, 0,0)  and 

H =0.05, the conditional MVaR-value increases in absolute value by 108.9% in Sample 

A, while it increases only by 7.8% in Sample B. The different patterns for the two 

samples are quite pronounced. In particular, the highest CMVaR for Sample B lies below 
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the lowest CMVaR for Sample A. Therefore, the risk dependence for market returns 

differs significantly from that corresponding to the multinormal synthetic data.    

 

Further, we observed for Sample A that the tail correlation decreases in the “positive” 

joint tail, i.e., for � = (lmn , 0,0) and �[ = (0, lop , 0), while it increases in the “negative” 

tail � = −(0, lop , 0) and �[ = −(lmn, 0,0). Both joint tails are bidimensional as they are 

the intersections of univariate tails. In the three-dimensional “negative” tail, defined by 

� = −(0,0, lqn) and �[ = −(lmn , lop , 0), the correlation coefficients between S&P 500 

and CRB index and between  S&P 500 and the GBP/ USD exchange rate were typically 

higher than the coefficients in the bidimensional tails. Interestingly, these coefficients fall 

in H except for H = 0.01 contrasting with the trend in the bidimensional “negative” tail. 

The tail correlation in Sample B is typically lower than in Sample A, lying below 10%, 

with the exception of 1% significance. Finally, the dependence coefficient decreases in H 

for both samples and all directional vectors. 

 

Although the results for H = 0.01 seem to contradict the general trend in some cases, their 

significance is limited as they were computed from small sets of observations. Generally, 

if the probabilities of the event r'  and the event r8  are H  and these events are 

independent, then the expected proportion of observations in the intersection r' ∩ r8 is 

H8 . Specifically, for our sample of ca. 10,000 observations, H =0.01 and under the 

independence of KLH�I
� and KLH�I

�Z , we expect 10000∙0.012 = 1 observation in the joint 

tail KLH�I
� ∩ KLH�I

�Z . 
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Figure 4 illustrates succinctly the co-dependence between the risk factors S&P 500 index, 

CRB index and GBP/USD exchange rate. The interdependence appears to be particularly 

strong at the 1% significance level although our caveat of small samples applies also in 

this case. Hence, we focus on the results for the 10% significance level. Whilst the 

dependence coefficient between KLH�I
� and KLH�I

�Z  does not depend, by definition, on 

the order of directional vectors, i.e.,  aI("j , �, �[) = aI("j , �[, �), the conditional  MVaRs 

may depend on this order. For example, the probability of exceeding the 10% SP-VaR 

(10% DP-VaR) increases by 25.7% when the 10% DP-VaR (10% SP-VaR) has been 

exceeded. On the other hand, the conditional 10% SP-VaR (conditional 10% DP-VaR) 

increases by 13% (17%) when the 10% DP-VaR (10% SP-VaR) has been exceeded. This 

difference in conditional VaRs indicates an asymmetric reaction to negative shocks. Note 

that the same framework can be applied to measure systemic risk e.g., by using S&P 500 

index as the “system” and a particular stock as a risk factor. 

 

[Figure 4] 

 

Finally, Table 4 summarizes our results on intertemporal risk dependence for the time-

lagged log returns (V<, V<t', V<t8)  on the S&P 500 index. Although the three series, 

computed from the same data as in the previous experiments, are essentially uncorrelated, 

there is a strong dependence in the tails. For example, the probability that the return 

tomorrow V<t' will fall below the unconditional 10% VaR is 63% higher, when the return 

today V<  fell below the unconditional 10% VaR. The conditional MVaR, on the other 

hand, increases by 50.5% in absolute value, when conditioned on the same event. The tail 
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dependence tends to decrease with higher H  in accordance with our previous results. 

Therefore, the temporal clustering of risk appears to be stronger for more extreme events. 

 

[Table 4] 

 

8. Conclusions 

The focus of the financial literature has recently shifted to aggregating the multiple 

sources of risk. While interesting in their own right, such approaches cannot 

comprehensively answer questions which are paramount for pricing, hedging and 

portfolio decisions. Interesting answers can be obtained by considering the individual 

sources of risks jointly. We propose a simple and flexible framework with several 

statistical end economic applications. This framework allows for an evaluation of joint 

density forecasts, which is relatively straightforward even in higher dimensions. 

Moreover, it also allows for an evaluation of such densities over specific areas as defined 

by the user’s interest. This is particularly convenient considering recent interest in the 

modelling of extreme events. A straightforward application of the proposed framework is 

the evaluation of the multidimensional Value at Risk and the measurement of dependence 

in risk. We illustrate such an application for a set of financial data in Section 7.  

 

Finally, the data-intensive requirements of the MVaR framework make it natural for 

employing high-frequency returns to examine their risk dependence. It would also be 

interesting to investigate the potential of the MVaR framework for minimum-VaR portfolio 

decisions. We intend to pursue both these avenues in future research. 
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Appendix A – Proofs  

Proof of Proposition 1:  

:⇒  	1 ∈ �(�, �) ⇒ 1�/�� ≥ �, ∀�� ≠ 0 ⇒ min�:�����1�/��� = ��(1) ≥ � 

⇒ ��(1)��/�� = 1��/�� ≥ �,			∀�� ≠ 0 ⇒ 1� ∈ �(�, �). 
  

:⇐  1� ∈ �(�, �) ⇒ 1��/�� ≥ � ⇒	��(1)��/�� ≥ �,			∀�� ≠ 0 

⇒	 min�:�����1�/��� ≥ � ⇒ 1� ��⁄ ≥ �,				∀ : �� ≠ 0 ⇒ 	1 ∈ �(�, �), 
 

where 1� = ��(1) · �,  ��(1) = min�����1�/��� were defined in (3). 

 

Proof of Corollary 1: 

Uniformity on [0,1]  follows from Corollary 2 and from the fact that UVW(KLH�I�)  =  

UVW(��(=) ≥ ��(", H)) = H for any H ∈ [0,1], where "	(;) is the PDF (CDF) of the DGP 

for =. As the uniformity holds for any CDF ;<, the distribution of the scores at date B	is 

?[0,1] and independent of the distribution of the scores at any other date v ≠ B. 
 

Proof of Corollary 2: 

:⇒    1 ∈ KLH�I� ⇒ 1�/�� ≥ ��(", H), ∀ : �� ≠ 0 ⇒ 

min�:����(1�/��) = ��(1) ≥ ��(", H) ⇒ #�(��(1), ") ≤ #�(��(", H), ") = H 

  

:⇐   #�(��(1), ") ≤ H = #�(��(", H), ") ⇒ ��(1) = min�:�����1�/��� ≥ ��(", H) ⇒
															1�/�� ≥ ��(", H), ∀ : �� ≠ 0 ⇒ 1 ∈ KLH�I� , 
 

where ��(1) = min�����1�/��� was defined in (3). 

 

Appendix B – Multivariate GARCH model and Estimation Method 

To obtain forecasts of the time-varying three-dimensional covariance matrix we employ 

the simplified GARCH (S-GARCH) model of Harris et al. (2007). Note that for our 

parametric specifications MN and MT distribution, covariance matrix together with the 
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degrees of freedom and means fully define the PDF. Our choice can be explained on the 

basis of the ability of this model to handle t-distributed residuals and its ease of 

estimation. The S-GARCH involves the estimation of only univariate GARCH models, 

both for the individual return series and for the sum and difference of each pair of series. 

The covariance between each pair of return series is then imputed from these conditional 

variance estimates. First, the conditional variances are estimated using univariate 

GARCH(1, 1) models:  

 V�,< = w�+x�,<,   = yU, fz, {U      (A1) 

l�,<
8 = H�,� + H�,'l�,<,'

8 + H�,8x8
�,<,',   = yU, fz, {U   (A2) 

 

Then six auxiliary variables, Vt,< = V�,< +V|,<  and V,,< = V�,< − V|,< ,  , } = yU, fz, {U,  ≠ } 
are constructed, and univariate GARCH(1, 1) models used to estimate the conditional 

variances of these.  

V~,< = w~ + x~,<,  � = +, −      (A3) 

l~,<
8 = H~,� + H~,'l~,<,'

8 + H~,8x8
~,<,',  � = +, −   (A4) 

 

where the residuals x�   = yU, fz, {U, +, −  are either normal or t-distributed. The 

conditional covariance between each pair of currencies is then imputed using the identity 

 

l�|,< ≡ (1/4)(lt,<
8 − l,,<

8 )       (A5) 

 

Like many other multivariate GARCH models, the S-GARCH does not guarantee that the 

conditional variance-covariance matrix is positive semi-definite. However, for all three 

pairs, the estimated correlation coefficients were found to be between –1 and +1 for all 

observations. We ML-estimate the S-GARCH parameters and the degrees of freedom 

parameter for the t-distributed residuals using the entire sample. We then use these 

estimates to obtain the forecast of the covariance matrix for B = 3001, … ,10097. On the 

other hand, the AED at time B = 3001, … ,10097, was defined by the sequence of the 

most recent 3000 observations. Note that all three MDFs vary over time.  
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Appendix C – Parameter Estimation Uncertainty  

It is well known that the presence of estimated parameters may complicate test inference. 

For example, the Kolmogorov test can be difficult to apply in the presence of estimated 

parameters, particularly for multivariate data with many parameters (see, for example, Bai 

and Chen, 2008). Following other scholars (Diebold and Mariano, 1995; Christoffersen, 

1998; Diebold et al. 1998, 1999; Clements and Smith, 2000, 2002), we consider the 

forecasts as primitives and ignore the method employed to obtain them. In many situations 

this may be an acceptable practice. Firstly, many density forecasts are not based on 

estimated models. For example, the large-scale market risk models at many financial 

institutions combine estimated parameters, calibrated parameters and ad-hoc modifications 

that reflect the judgment of management. Another example is the density forecasts of 

inflation of the Survey of Professional Forecasters (see Diebold et al., 1998). Moreover, 

previous research suggests that parameter estimation uncertainty is of second-order 

importance when compared to other sources of inaccuracies such as model misspecification 

(Chatfield, 1993). Further, Diebold et al. (1998) find that the effects of parameter 

estimation uncertainty are immaterial in simulation studies geared toward the relatively 

large sample sizes employed in financial studies such as the present one.  

When parameter estimation cannot be ignored, the problem can be approached as follows. 

Firstly, for time-invariant forecasts, suitable estimators can often be found that lead to 

pivotal test statistics e.g., the “super-efficient” estimators (see Watson, 1958; Birch, 1964). 

Secondly, an important class of models comprises a time-varying hypothesised distribution 

with a well-defined structure on the co-evolution of the variables e.g. VAR and GARCH 

models. In this case, one way of accounting for parameter estimation uncertainty is to apply 

the K-transformation (Khmaladze, 1981), which allows for the construction of a 

distribution-free test statistic. In principle, the K-transformation can be applied to the JDT-

test along the lines of the V-test in Bai (2003) and Bai and Chen (2008). Its computation, 

however, may be cumbersome for non-standard MDFs. Finally, in the case of arbitrary 

time-varying MDFs – for which our general model is particularly suited – parameter 

estimation is infeasible as only one observation is drawn from the MDF at each date. As 

such, the only practical solution is to assume that the hypothesised model is correct under 

the null. 
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Table 1: Synchronized Daily Returns 

 

 
S&P 500 

 
CRB Spot 

Index 
USD/GBP 

Mean % 0.023 0.014 -0.004 
Stand Dev 1.082 0.444 0.603 
Skewness -1.086 0.332 -0.095 
Kurtosis 27.523 17.532 5.029 

B-J 12070.545 12949.687 10658.712 
ARCH4 692.510 703.646 798.691 

 
Correlations 

 
 S&P 500 CRB USD/GBP 

S&P 500 1.000 0.075 0.015 
CRB  1.000 0.114 

USD/GBP   1.000 
 
 
Notes: The table reports the mean, standard deviation, skewness, excess kurtosis, Bera-
Jarque statistic, ARCH4 statistic and the correlation matrix for the synchronized log 
returns for S&P 500, CRB Spot Index and the USD/GBP exchange rate for the sample 
period from 3 January 1972 to 14 September 2010 (10097 synchronized daily 
observations). 
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Table 2: Overall and directional accuracy of MN, MT and AED distribution 

 

Notes: The table reports the p-values of the �8-test of uniformity for the z-scores (bold), 
the exception rates i.e., the proportion of times the forecasted MVaR is exceeded and the 
p-values of the Kupiec statistic in parentheses. Sample period: from 4 July 1983 to 14 

September 2010 (7097 synchronized daily observations). The degrees of freedom 2.7 for 
the MT distribution were ML estimated, given sample means and covariances. 

  
 
 
 
 
 
 

Nom. Sign./d −(lmn, lop , lqn) (lmn , lop , lqn) (lmn , 0,0) −(0, lop , 0) 
MN p-val. 0 p-val. 0 p-val. 0 p-val. 0 

01.0=α  0.017 (0) 0.016 (0) 0.015 (0) 0.014 (0) 
05.0=α  0.043 (0)  0.040 (0)  0.039 (0) 0.042 (0)  
10.0=α  0.063 (0) 0.071 (0) 0.071 (0) 0.074 (0) 
25.0=α  0.346 (0) 0.334 (0) 0.180 (0) 0.184 (0) 

MT(2.7) p-val. 0 p-val. 0 p-val. 0 p-val. 0 
01.0=α  0.010 (0.763 0.010 (0.689) 0.008 (0.021) 0.011 (0.449) 
05.0=α  0.049 (0.231) 0.048 (0.076) 0.052 (0.156) 0.048 (0.053) 
10.0=α  0.074 (0) 0.086 (0) 0.108 (0.01) 0.086 (0) 
25.0=α  0.192 (0) 0.186 (0) 0.211 (0.0) 0.224 (0) 

AED p-val. 0 p-val. 0 p-val. 0 p-val. 0 
01.0=α  0.012 (0.03) 0.014 (0) 0.013 (0.01) 0.013 (0.01) 
05.0=α  0.055 (0.02)  0.057 (0)  0.055 (0.02) 0.056 (0.01)  
10.0=α  0.095 (0.17) 0.095 (0.14) 0.105 (0.13) 0.114 (0) 
25.0=α  0.245 (0.34)    0.250 (0.87) 0.253 (0.41) 0.255 (0.27) 
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Table 3: Risk Dependence for S&P 500, CRB Index and USD/GBP exchange rate 

                     � = (lmn , 0,0)                      � = −(0, lop , 0)                    � = −(0,0, lqn) 
                     �[  = (0, lop , 0)                     �[ = −(lmn , 0,0)                    �[ = −(lmn , lop , 0) 

    
Nominal 
Probab. 

JDT 
Correl. 

Dep. 
Coeff. 

Cond. 
MVaR 

JDT 
Correl. 

Dep. 
Coeff. 

Cond. 
MVaR 

JDT 
Correl. 

Dep. 
Coeff. 

Cond. 
MVaR 

 Sample A 
  01.0=α    .352 0.495 2.851 .012 0.866 1.654 .34/.08 0.844 1.232 

05.0=α  .193 0.291 0.490 .123 0.434 1.089 .58/.28 0.354 0.724 
10.0=α  .101 0.151 0.182 .225 0.265 0.483 .45/.20 0.223 0.347 
25.0=α  .081 0.067 0.148 .243 0.086 0.461 .27/.21 0.046 0.164 

 Sample B 
01.0=α  .061 0.400 0.077 -.144 0.600 0.099 -.22,-.1 0.900 0.097 
05.0=α  -.012 0.250 0.067 .043 0.310  0.078 0,.01 0.490 0.102 
10.0=α  -.023 0.240 0.098 .012 0.250  0.106 -.05,0 0.280 0.114 
25.0=α  .021 0.120 0.127 .020 0.110 0.132 0,.04 0.130 0.141 

 
 
Notes: The table reports tail correlation, dependence coefficient aI("j , �, �[)  and 

conditional MVaR fKLH�I
�,�Z  for the empirical distribution function "j , nominal 

significance levels H= 1%, 5%, 10%, 25% and directional vectors � and �[. 
Sample A consists of synchronized log returns for S&P 500 (SP), CRB Spot Index (CI) 
and the USD/GBP exchange rate (DP) with mean w = (wmn , wop , wqn)  and standard 
deviation l = (lmn, lop , lqn) as reported in Table 1. Observations were obtained from 
Datastream and cover the period from 3 January 1972 to 14 September 2010 (10,097) 
synchronized daily observations.  
Sample B consists of 100,000 observations that were generated from the multinormal 
�(w,∑) wherew = (wmn , wop , wqn) and ∑ is the empirical covariance matrix computed 
from Sample A. 
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Table 4: Intertemporal Dependence for S&P 500 

                   � = (l, 0,0)                         � = −(0, l<t', 0)                   � = −(0,0, l<t8) 
																					�[ = (0, l<t', 0)                    �[ = −(l<, 0,0)                        �[ = −(l<, l<t', 0) 

    
Nominal 
Probab. 

JDT 
Correl. 

Dep. 
Coeff. 

Cond. 
MVaR 

JDT 
Correl. 

Dep. 
Coeff. 

Cond. 
MVaR 

JDT 
Correl. 

Dep. 
Coeff. 

Cond. 
MVaR 

  
01.0=α  .64 4.94 1.155 .47 7.91 6.808 -.16,.01 6.92 6.808 
05.0=α  .54 0.98 0.447 .49  1.53  0.637 .09,.32 0.94 0.491 
10.0=α  .43 0.43 0.247 .29 0.63 0.505 .20,.35 0.34 0.250 
25.0=α  .24 0.03 0.042 .31 0.17 0.314 .14,.33 0.11 0.184 

 
 
Notes: The table reports tail correlation, dependence coefficient aI("j , �, �[)  and 

conditional MVaR fKLH�I
�,�Z  for the empirical distribution function "j , nominal 

significance levels H= 1%, 5%, 10%, 25% and directional vectors � and �[. 
The sample was obtained from Datastream and consisted of S&P 500 log returns 
(V<, V<t', V<t8) for B=1,…,10,095 (3 January 1972 to 10 September 2010) with means 
(w< , w<t', w<t8)  = (0.0236,0.0237,0.0237), standard deviations (l<, l<t', l<t8)  = 
(1.08299, 1.08303, 1.08302) and the correlation matrix ((1,0.004,-0.039), 
(0.004,1,0.004), (-0.039, 0.004,1)). 
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Figure 1: Directed line � ∙ � and a JDT �(�, ��) in ��. 
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Figure 2: Projections on the directed line � ⋅ � in ��. 
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Figure 3: �����
� as an intersection of unidimensional VaRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

u·d

dMVaRα

XVaR 1α

YVaR 2α



38 
 

 

Figure 4: Conditional MVaRs and dependence coefficients. 

 

Notes: Conditional MVaRs and dependence coefficients for the risk factors S&P 500 
stock index (SP), CRB spot index (CI) and USD/GBP exchange rate (DP) computed for 
vectors −(lmn , 0,0), −(0, lop , 0) , −(0,0, lqn)  at 1% and 10% significance level. The 
number in the middle of each double-arrow line is the dependence coefficient between 
the corresponding risk factors.  The number close to a risk factor on a double-arrow line 
is this factors conditional MVaR, given the occurrence of the α-VaR for the risk factor on 
the opposite side of the same line.  
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DP

CI
0.50

0.48
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0.257 0.762

SP

DP
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1.65

1.12
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1.23

12.86

9.891 7.91

α = 0.01 α = 0.1


