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Abstract

Evaluating multiple sources of risk is an importpnbblem with many applications in
finance and economics. In practice this evaluatemains challenging. We propose a
simple non-parametric framework with several ecoicoamd statistical applications. In
an empirical study, we illustrate the flexibilityf our technique by applying it to the
evaluation of multidimensional density forecastsjltidimensional Value at Risk and

dependence in risk.
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1. Introduction

Most of the financial literature assumes that twasiderations are of utmost importance
for an investor: the reward that may be attainaole the inherent risk in obtaining this
reward. The trade-off between reward and risk ésébsence of any investment strategy.
While it is straightforward to approximate the red/ay the return on the investment, the
definition of risk is more ambivalent since it inves quantifying various sources of

uncertainty about the future investment value.

Conceptually, risk is the potential for (adverseyidtion from expected results. Different
proxies for risk have been proposed, where perkiasnost popular in the univariate
context is the variability of returns, as measuygdhe variance. If returns are not drawn
from a normal distribution, then variance is nogen an appropriate measure of risk
because it fails to capture some of the charatt=i®f the return distribution that
investors consider important. An alternative unista risk measure is the Value at Risk
(VaR), which is defined as the maximum loss on @fpo over a certain period of time
that can be expected with a nominal probability.eWheturns are normally distributed,
the VaR of a portfolio is a simple function of thariance of the portfolioSzego 2002).
However, when the return distribution is non-nornesd is now the general consensus,
the VaR of a portfolio is determined not just b thortfolio variance but by the entire
conditional density of returns, including skewnessl kurtosis (see Tay and Wallis,

2000).



Risk management, generally, involves more than osky asset and is particularly
concerned with the evaluation and balancing ofitmgact of various risk factors. If the
joint distribution of asset returns is multinormi@en the correlation coefficient adequately
captures the dependence between assets (see Diebatl, 1999). However, joint
normality is not supported by empirical evidencee(sfor example, Patton, 2004).
Moreover, correlation is only a measure of linegpehdence and suffers from a number of
limitations (see Embrechts et al., 2002; Pattoi®420These deficiencies are compounded
in the covariance measure which is an explicit fiomc of the individual variables
variances and their correlation. The overrelianoecovariances can have detrimental
consequences as they are an essential input in rimaaycial applications including
hedging and portfolio decisions. Indeed, Embreefital. (2002) warn that unreliable risk
management systems are being built using corremticand by extension covariances — to

model dependencies between highly non-normal risks.

While in the univariate context, the shortcominfizariance as a risk measure have been
mostly addressed by VaR, the financial literatineg explicitly addresses the shortcomings
of the covariance as a measure of co-dependerstd! is its infancy. Failure to properly
characterize the relationships and inter-dependehdbhe multiple risk factors can have
severe consequences as demonstrated by the raiterd bf the rating agencies to account
for house price risk when rating structured prody@orton, 2010). Moreover, while the
financial literature is replete with techniques @thimodel the dependence in return (e.g.
CAPM, APT), the equally important matter of the eiegence in risk has only recently

come to attention (see Patton, 2009).



This paper makes the following contributions to tfascent literature on multi-factor risk.
Firstly, it proposes a simple and flexible statigtiframework to evaluate time-varying,
density forecasts of multidimensional risks. Se¢pndaR isgeneralized in a natural way.
Essentially, multidimensional Value at Risk (MVaR) a region of the intersection of
univariate VaRs with a nominal probability mass emd given density function. It turns
out that MVaR is a versatile framework that allofes examining and evaluating the
dependence in risk. MVaR can also be seen asighgtoaward illustration of the multiple
sources of risk: If VaR is a univariate risk mea&suwvhich instead of the variance takes into
account the entire tail density, then MVaR is a soea of multidimensional risk that

instead of the covariances takes into accountrhieealistribution in the relevant joint tail.

The outline of the remainder of this paper is dto¥es. In Section 2, we present an
economic motivation for MVaR, while in Section 3 wiéscuss the concept of joint
density tails. In Section 4, we illustrate the laggtion of this framework to

multidimensional density forecasts (MDF) evaluati@ection 5 introduces MVaR and
discusses its various statistical and economicprggations, while Section 6 applies the
MVaR framework to the measurement of the depend@nciesk. Section 7 presents a

small empirical study to illustrate these concepisally, Section 8 concludes.

2. Motivation for Multidimensional Risk

Effective risk management requires not only coridentification of the sources of risk
but also an adequate capturing of their distrimaiocharacteristics. Examples of the

importance of properly accounting for the multigeurces of risk come from the
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financial economics literature. A major contributito this literature, the Capital Asset
Pricing Model (CAPM), models asset returns by degoosing their variability into
market risk and firm-specific effects that can Ieetsified away in large portfolios. In
this model, the return on the market portfolio susmises the broad impact of
macroeconomic factors. However, often rather thaimgia market proxy, it is more
enlightening to focus directly on the ultimate, iindual sources of risk. This can be
useful in risk assessment, when measuring exposugaticular sources of uncertainty.
Arbitrage Pricing Theory (APT) shows how a deconias of risk into systematic and
idiosyncratic influences can be extended to deah whe multifaceted nature of
systematic risk. Multifactor models can be useth&asure and manage exposure to each
of the multiple economy-wide risk factors such asgy. business-cycle risk, inflation,
interest and exchange rate risk and energy prile (gsee, for example, Ferson and

Harvey, 1994; Chan et al., 1998).

The recent financial crisis brought to the forefrohattention systemic risk. This is the
risk of collapse faced by the financial system aghale when one of its constituent parts
gets into financial distress. Due to the intercaninéy of the financial institutions, a
shock faced by one institution in the form of atreme event, increases the probability
other financial institutions experiencing similaxteme events, leading to a domino
effect (see Gai and Kapadia, 2010; Nijskens andn#lad011). At the individual level,
financial institutions are subject to three typésisk: market, credit and operational risk.
For example, market risk typically generates pdidfealue distributions that are often

approximated as normal. Credit and especially djpsr@ risk generate more skewed



distributions due to occasional extreme losses.elxamples of market risk, see Jorion
(2001). Crouhy et al. (2001) give examples of latee risk types while Kuritzkes et al.
(2003) present stylized pictures of a very broadyeaof risk types that are faced by large
financial companies. In recent years, there hasn beereasing concern among
researchers, practitioners and regulators oveetaduation of models of financial risk.
Moreover, while it is important to have an aggregaeasure of the total risk, often it is
also important to know the direct dependence od,iater-relationships of, the specific
market, credit and operational sources of risk.s€h@evelopments accentuate the need
for evaluation techniques that are flexible and petverful (Lopez and Saidenberg,

2000).

While the literature on aggregating the multiplaurees of risk is recently gaining
momentum (see, for example, Rosenberg and Schuerr2806), there appears to be
virtually no research into the joint evaluationsafch sources of risk or to characterize
their inter-dependence. Moreover, while some rigles are more easily characterized
and measured than others, much less is known adheiutjoint behaviour, distributional
characteristics and cross-influences (see, for pi@nChollete et al., 2011). By focusing
on the joint distribution of the individual sources risks, we provide a framework to
characterise the co-dependence of these risks. ithportant to emphasize that such a
framework is not merely statistically interestidg demonstrated by the recent financial
crisis, financial institutions and regulators amefact concerned with the possibility that

their risk models do not adequately describe tahés. Indeed, a type of model failure of



particular interest to financial institutions arebulators is that in which the forecasted

probabilities of large losses are inaccurate ors@punderestimated.

3. Joint Density Tails
In this section, we introduce definitions that vl used throughout the paper. A joint
density tail (JDT) is an unbounded region of thelEiean space that is marked off by
cut-off values. A parsimonious definition of theTD(d, v) in the N-dimensional linear
spaceR” over the real lin&R requires only one cut-off valuee R and a directional

vector d € RV as illustrated in Figure 1,
0(d,v):={y € RN:y;/d; = v, Vd; # 0} (1)
[Figure 1]
For instance, iN = 2,d = (1,0) andv = 0, thenO(d, v) is the half-plane containing all

points with non-negative first coordinates. It ¢olls directly from definition (1) that

0(d, v) is an intersection of univariate tails,

0(d,v) = ﬂ 0(d;ut, v)

i:dj#0

! When the Federal Reserve Chairman Ben Bernankeaskasi by the Financial Crisis Inquiry
Commission what academic papers he recommendsngeathout the financial crisis and its
aftermath, he suggested, among others, a paperdosamand Brunnermeier (2009), which
proposes CoVaR (“Co” stands for conditional, coimagor co-movement) as a way to measure a
firm's systemic risk (see http://blogs.wsj.com/deals/2010/09/02/ben-bernatiiesr-day-
reading-list). CoVaR is a nested measure of our MVaR framework.
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whereu! is the unit vector in direction= 1, ..., N and0(d;u},v) is a half-nyperspace in

RN,

Given anN-dimensional probability density function (PDF)the probability mass of the

JDT 0(d, v) underf is computed as

dp oo djoo roo oo

24, f) :|fd1yv S Voo Lo F @y Ty ey )
where we first integrate over the entire real ioethe variables;, ...t,_; withd; = - =
di_, = 0. Given a line irR" along the directional vectar € R", we define the following
projectionx® of the pointx € RM on this line,

x® = v?(x) - d where v%(x) = ming,o{x;/d;} (3)

The pointx is projected along the axighat corresponds to the minimum ratigd;. The
next proposition states that the projectidnof a pointx that lies inside (outside) of the
JDT 0(d, v), stays inside (outside) this JDT.

Proposition 1: For a directional vectat € RV, d # 0, andv € R,

x €0(d,v) = x% € 0(d,v) (4)



Figure 2 presents an intuitive proof of this prapos, while the formal proof is given in
the Appendix.

[Figure 2]

The JDT definition (1) is of fundamental importanice our measures of MVaR, risk
dependence and for risk forecasting, while Propositl is crucial for a systematic
evaluation of these concepts. Unlike other measwafesnultidimensional risk (e.g.,
Embrechts and Puccetti, 2006), we focus on riskhgla pre-specified direction as
expressed by the directional vectat. The first advantage of this approach is that it
reduces a multidimensional problem to a unidimemdi@mne, which then allows for the
application of the well-known techniques of riskamation. In particular, the univariate
VaR will be obtained as a special case. Secontlyflexibility means that risk can be
evaluated over specific areas as defined by thesusgerest. For example, an investor
who is exposed to a subset of assets is more &téerén the joint probability of extreme
events involving these assets than in an overadlsore of market risk. Thus, our model
does not impose any constraints on the choice @fdihectional vector. This decision

pertains to the user who tailors the directionateeaccording to their particular interest.

4. Multidimensional Density Forecast Evaluation
Our first application of Proposition 1 is the ewation of time-varying multidimensional

densities. Recently, the trend in the finance aywhemics literature is decisively towards

2 The directional vectord has a distinct financial interpretation. For exénpsuppose a
hypothetical investor holds a portfolio that isdamvo units in Asset 1 and short one unit in Asset
2. Then, a directional vector of particular intéres this investor isl = (d,d,)' = (2,—1)" as

it succinctly represents his portfolioR3 space.
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joint density forecastingThe increasing importance of forecasts of theremmnditional
joint density naturally raises the issue of foréoagaluation. The relevant literature,
although developing at a fast pace, is still iniftiancy. This is somewhat surprising
considering that the crucial tools date back a desades. Rosenblatt (1952) showed that
for the cumulative distribution function CO% (PDFf;), which correctly forecasts the
true data generating process (DGP) for the randanameX;, the probability integral
transformation (PITY, = F;(X;) is i.i.d. U[0,1] overt. Therefore, the adequacy of
forecasts can be easily evaluated by examiningzhe F,(x,)}!_, series for violations

of independence and uniformity.

The PIT idea is extended to the multivariate cageDlebold et al. (1999). Their test
procedure factors each period’s MDF into the prodd¢he conditionals and obtains the
PIT for each conditional distribution. As a restitis procedure generates a PIT series for
each conditional and the generated series carstegltior violations of independence and
uniformity individually and as a whol&ejecting the null of.i.d. U[0,1] for any series
implies that the MDF is misspecified (see also Geta and Smith, 2000, 2002).
However, these approaches rely on the factorizatfoeach period forecasts into their
conditionals, which may be impractical for some leggions, such as for numerical
approximations of MDFs often employed in financee(ghe survey of Corradi and

Swanson, 2006).

% See, for example, the recent issue on copulasnativariate distributions in th&uropean
Journal of Finance (2009), 15(7&8) and the references therein. See #ile Special Issue on
Density Forecasting in Economics and Finance inJtuenal of Forecasting (2000), 19, 231—
392.
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Our Proposition 1 implies that the potentially clerdome factorization of a MDF can be
circumvented and uniformly distributed scores can dbtained by exploiting the
properties of projection (3). Specifically, our DSt uses the projection? = v%(x) -

d of the original observatiox € RY to compute the corresponding score as the
probability mass (2) over the induced JDTd, v¢(x)), wherev?(x) = mingo{x;/d;}.

In the Appendix, we prove the following result.

Corollary 1: If the sequence of time-varying CDEB.}/_, is the true DGP for the
sequence(X,}{—,; of N-dimensional random variable§ = (X, ...,Xy.), then the z-
scores{Z{ = F,(v%(X,))}t=1, Wherev®(X,) = ming .o{X;./d;} andd € R¥, d # 0, are

i.i.d. U[0,1] overt.

Note that for unidimensional forecasts our procedteduces to the traditional PIT.
Importantly, the proposed procedure effectivelypsfarms a CDH; into a unidimensional
random score variable. Further, the corollary iegplihat the null hypothesis of the overall
accuracy of a density model can be tested by #relatd tests of uniformity (see Noceti et
al., 2003) and independence (see Brock et al., )198hen rejecting the null, we can
dismiss the density model as inaccurate. Acceptameehe other hand, means that the
density specification is compatible with the sampiden verified along the directional

vectord € RYN. We discuss the issue of parameter estimationrtaiicty in the Appendix.

* Due to the focus on the joint density tails, wk @ar procedure the JDT-test.
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5. Multidimensional Value at Risk
The unidimensional Value at Risk (VaR) is now of¢he most widely used measures of
tail risk among practitioners, largely due to itdoption by the Basel Committee on
Banking Regulation (1996) for the assessment ofigieof the proprietary trading books
of banks and its use in setting risk capital regients (see Gourieroux and Jasiak, 2010).
For the unidimensional continuous CBF(PDFf;), the VaR at the nominal levelis the
guantilev, for whichF,(v,) = a. From the VaR definition follows that the probatyili

mass (2) undef; of the intervaly € R:y < v,} is equal to the nominal level

In analogy to VaR, we define the multidimensional¢ at Risk in directiod € R" at
the nominal levelh (MVaR%) as the cut-off valuer®(f,a) € R such that the probability
mass (2) undef of the JDTO(d, v4(f, a)) is equal to the nominal level However, we
will often identify theMVaRZ-valuev®(f,a) also with the JDTO(d, v%(f,a)). Then,
depending on the context, we will refer MVaR% either as a (probabilistic) event
or as a set. The boundary of the latter set inctioei = 1, ..., N is defined by the value
ve(f,a) - d;, whered; # 0. We will say thatc € R" is an extreme observation, whenever
the projectionv?(x) of x exceeds (violates) the threshat®(f, a) or, equivalently, when

x falls into the seMVaR¢,

v3(x) = v%(f,a) © x € MVaR? (5)
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Note that the equivalence of these two events id@ldrom Proposition 1. Due to the
decomposition of JDTs into univariate tail6/aR%-set can be seen as an intersection of

univariate VaRs, as illustrated in Figure 3 foraabate distribution.

[Figure 3]

It is important to note that our MVaR definitionffdrs in important ways from the MVaR
measure introduced in Embrechts and Puccetti (200®)y define the multivariate lower-
orthant (LO-)VaR a¥/aR,(F) := d{x € RV:F(x) < a}. In spite of its mathematical
appeal, their measure is of limited use for oumppsaes. Most importantly, the probability
under the MDFF of the regior{x € RN: F(x) < a}, i.e., where the LO-VaR is exceeded, is
generally not equal ta whenN > 1. Therefore, it is not clear how the LO-VaR can be
evaluated in empirical applications. Further, antlke MVaR defined in this paper, it is
not clear how LOVaR can be adapted to measuredeglendence (see Section 6 below).
Similar observations apply to the second multivariaisk measure, introduced in

Embrechts and Puccetti (2006), the upper-ortha@t-{\JaR.

In spite of their conceptual simplicity, workingrectly with MVaRs can prove
challenging in higher dimensions. However, we vghow that the relevant MVaR
inference can be more easily obtained fromzthscores. Specifically, for the projection
x* = v4(x) - d of observationr, we will compute itzZ-score as the probability mass
(2) underf of the corresponding JDO(d,v%(x)). Our next result (proved in the

Appendix) characterizes the score values of obsenain theMVaR2.
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Corollary 2: For a continuous PDF, a directional vectod € RY, d # 0, and a nominal

significance levek € (0,1),
x € MVaR? & z¢(v%(x),f) < a (6)

An important application of Corollary 2 is the evafion of MVaR forecasts for a given
sequence of time-varying density foreca‘{;ﬁ_l}:=1 based on a sequence of

multidimensional observationgx,}f_, . Corollary 2 implies that, under the correct
forecasting model, the proportion gf -scores, computed fdw,}7_; and with values
belowa, should approach the nominal significance lev&r a sufficiently large sample.
We refer to this procedure as unconditional acqur@n the other hand, the conditional
accuracy requires that the number of scores withegdess than should be unpredictable
when conditioned on the available information. thes words, thé/VaR¢ violations (i.e.
extreme observations whose projections along tlotowe exceed théfVaR? threshold)
should be serially uncorrelated. Thus, if the fastimg model is correct, an extreme
observation today should contain no informatioicaghether an extreme observation will
occur tomorrow. To assess both types of accuraey,can resort to the unconditional
accuracy test of Kupiec (1995) and the conditi@wuracy test of Christoffersen (1998).
Although both tests are designed for testing theanate VaR accuracy, they still apply
for our purposes because the score computatiorctietiéy converts a MDF into a

univariate score variable.
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5.1  Thelnterpretation of MVaR as a Risk Distribution Measure

In the Introduction, we noted that variance is madequate risk measure if the return
distribution is non-normal. If this is the casegerthan adequate risk measure must
incorporate all the characteristics that define theurn distribution. As such, VaR
addresses the shortcomings of the variance asatporates the entire tail distribution. In
analogy, MVaR can be interpreted as a measure tfdimensional risk that takes into
account the entire density in a JDT. Further, Mla&s naturally to a risk distribution
function (RDF). An RDF can be constructed forisk factorsys, ..., Yy with the joint
PDF f when the payoff of an agent depends on the stdizgak factory; /d, , ..., Yy/

dy. The standardization can account for, e.g., dfferunits or variances of the risk

factors. Then, the following definition of the RDt this agent,

¥Y(v;d) = Pry(0(d,—v)) where0(d,—v) :={y € R":y;/d; > —v, Vd; # 0}

satisfies the conditions of a CDE/(—x;d) =0, ¥(o;d) =1 and¥(v;d) non-
decreasing in the first argument. The RBf; d) is the probability that all standardized
risk factors exceed the critical lewekimultaneously. For an observationwe can also
compute the cut-off valug®(x). If the latter value exceeds (or violate€)f, a), a risk

event at significance level has occurred.

6. Dependence in Risk
In this section, we define two risk dependence mmess that rely on the MVaR

framework. The first one is the relative changehie probability ofMVaR%, given that
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MVaRg, d # d, has occurred. Specifically, for the multidimemsgibrandom variabl@

with the joint PDFf,

Pry(MVaR& n MVaR%)

¢(f,d,d) = Prs(R € MVaR%|R € MVaR%) = _
pilfi. ) = P ’ ) Pry(MVaR2)

is the conditional probability of thdVaR%-event, given the occurrenceMVaRg.

By the definition of statistical independence,atds in the special case= a that,

pe(f,d,d) = Prs(MVaR§) = a

when the event#/VaR? and MVaR? are independent. Therefore, we can express the
degree of dependence between these events by lh&veaechange in conditional

probability,

Vo(f.d.d) =v,(f.d,d) = (pa(f.d.d) — a)/a (7)

which is equal to zero wheMVaR% andMVaR< are independeritPositive values of
Yo(f,d,d) indicate that the occurrence ItznVaRg~ increases the probability 8fVaR?,
while negative values indicate the opposite. Nbot# thanges in the nominal leveto

not affecty, (f,d,d ) as long as the ratj, (f, d, d )/a remains constant,

® An alternative dependence measure can be defged a

7a(f.d,d) = (pa(f.d.d) — a)/(pa(f,d,d) + a)

The benefit of this measure is that it is normalize lie between -1 and 1, while it attains the
value of zero wheMVaR% andMVaR¢ are independent.
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Pa (f!de)/a:pd (f'de)/d:>Ya (f'd'd) =VYa (f!d'd)

Our second dependence in risk measure, conditibh&dR (CMVaR), is similar to

CoVaR in Adrian and Brunnermeier (2009) and isrdsdi as the relative change in the

MVaR%-value when conditioned on tMVaRg-event,

CMVaR%? = (vd(f|MVaR§, a) —vi(f, a)) /v (f, @)l (8)

where ve(f,a) is computed with respect to the PDFwhile vi(f|MVaR%,a) is
computed with respect to the conditional PD|IMVaR§, i.e., with respect to the
normalized density overMVaRg. This measure indicates the relative change in the
MVaR%-value, when conditioned on the occurrencM@’faRg. If the latter event has no
impact onMVaR?, then CMVaRg'& is equal to zero. On the other hand, positive
(negative) values cﬂ’MVaRg'a indicate that the conditioning increases (dec®at®e
risk, as measured Y¥VaR%. Note that CMVaR can also be employed to measure
systemic risk and contagion. For example, if MVaRue v%(f,a) measures the
unconditional risk of a financial system, th@MVaRﬁ’& may capture the exposure of this

system to an institution, representeddyexperiencing the extreme evMVaRg.

The dependence measures can be computed eitheaftbeoretical density functighor
from observations that define an empirical distiifruf;. The task is simplified in the

latter case as multidimensional integration in taéculation of MVaR-values from the
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PDFf is replaced by the computation of the correspandjnantiles for unidimensional

projections (3) of observations fia along directional vectors.

For example, in order to compukey, (R € MVaRZ|R € MVaRg), we first select the

MVaR& (MVaRg) to contain the proportioa (&) of observations irfy with the largest
projections on the line along the directional vect@d). Then, we compute the empirical

conditional probability from the number of obseigas in the intersectioMVaR? n

MVaRg over the number of observationsl\iﬁ/aRg. We can compute‘MVaRg'& in a

similar manner. Importantly, these computations banperformed efficiently in higher

dimensions and for large samples. Therefggéf,d, d) andCMVaRZ’& are convenient

and robust non-parametric tools for analyzing ddpane in multidimensional data.

7. Empirical lllustration of the MVaR Framework
In this section, we present a small empirical studyillustrate the evaluation and
measurement of the multiple sources of risk ingheposed framework. We employed
three-dimensional observations composed of the dzgj returns for the S&P 500 stock
index, the spot index of a basket of commoditiesmated by the Commodities Research
Bureau CRB and the GBP/USD exchange rate (SP, € Déhhereafter). The data were
obtained from Datastredrand cover the period 3 January 1972 to 14 Septe@0ikD

10097 synchronized daily observations.

® Note that the observation is more extreme (in directiaf) than the observation, if and only

if v3(xy) > v4(xy).

" Datastream provides global financial and macroesva data and is owned by Thomson
Reuters. For details ségp://thomsonreuters.com/
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We interpret the three variables as representifigrdint sources of risk originating in the
domestic, commodities and foreign exchange markespectively. Table 1 presents
summary statistics for the continuously compoundtaly returns for the three
synchronized time serie8ll mean returns are close to zero and there igakvwpositive

correlation between the factors. In line with poaid evidence, the distribution of daily

returns is heavily leptokurtic.

[Table 1]

In the first part of the experiment, we test theusacy of two parametric distributions —
the multinormal (MN) and the multivariate t-distuion (MT) — and the accuracy of the
adaptive empirical distribution (AED). All speciéitons are time-varying. The details of
the dynamic estimation of the parametric distribasi via a multivariate GARCH model

are given in the Appendix.

We use the observations 3001 to 10097 to computezihscores for all three
specifications (the first 3000 observations weredufor the initial estimation). Thef'-
scores are computed in directions that are prapatito the standard deviationg, o¢;
and opp Of the respective sample returns. For examp&aR? in direction d =
(asp,0c1, 0pp) CONtains all observations whose projections excédd, a), wheref is
either the MN, MT or the AED andis the nominal significance level. Although our

choice of the directional vector serves only asllastration of the techniques involved,

19



we made it proportional to the empirical standaediations of the risk sources for the

sake of normalization and, hence, comparabilitthete risks.

The results of the experiment are reported in Tabl&irst, we focus on the overall
accuracy of the three specifications by computheg g-values of the uniformity test for
the z-scores (numbers in bold). For all distribogi@nd along all tested directions, the p-
values are essentially equal to zero, which imghes the data is not generated from any
of the specifications. Note that for the directiowactors(asp, 0,0) and—(0, o, 0), we
effectively test the null that the factors SP anldw@re generated by the respective

marginals of MN, MT and AED.

[Table 2]

Comparing the MVaR accuracy of the different modelgeals that at low significance
levels only the MT can approximate the true DGPve@ithe estimate of 2.7 for the
degrees of freedom i.e. the relatively thick tdifgs finding confirms the universality of
the approximately cubic law for extreme returnse(8opikrishnan et al., 1998) in the
multivariate context. On the other hand, AED is thedel of choice at high significance
levels. Interestingly, the example of the direcéibrector—(asp, o¢;, opp) Shows that
extreme simultaneous decreases cannot be estimaiatly from past observations.
More precisely, the probabilities of such extremeergs will be consistently
underestimated — a potentially severe problemisgrmanagement — as illustrated by the

fact that the AED leads to the proportion of z-esowith frequencies of observations less
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than or equal ta that is far above this nominal lewel This finding suggests that the
probability of all negative extreme events haseaased steadily since 1972 i.e., during

our sampling period.

The second part of our empirical study focuses &faRl risk dependence measures and
uses the same observations on S&P 500 index, CB&kiand the GBP/USD exchange
rate as the accuracy tests. We refer to this dagaaple A. In addition, we compute the
dependence measures for synthetic data (Sampléhd@)was drawn from a three-
dimensional multinormal with the same parameterSasple A. In Table 3, we report
for each nominal levet and vectorsl andd, the dependence coefficient, CMVaR and
the tail correlation. The latter is computed asabgelation coefficient for observations
in the relevant joint density tail. It quantifidsetlinear dependence of variables in this

tail (see Longin and Solnik, 2001).

[Table 3]

We observe that the CMVaR decreases in Sample A while it tends to increase in the
synthetic Sample B, although the former CMVaR wagis significantly higher than the

latter. In particular, for the directional vectats= —(0,0;,0), d = —(agp,0,0) and

a =0.05, the conditional MVaR-value increases in altgolalue by 108.9% in Sample
A, while it increases only by 7.8% in Sample B. Tdiéerent patterns for the two

samples are quite pronounced. In particular, tgadst CMVaR for Sample B lies below
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the lowest CMVaR for Sample A. Therefore, the rd#pendence for market returns

differs significantly from that corresponding tetmultinormal synthetic data.

Further, we observed for Sample A that the tairedation decreases in the “positive”
joint tail, i.e., ford = (asp,0,0) andd = (0, o¢;, 0), while it increases in the “negative”
tail d = —(0, 0, 0) andd = —(asp, 0,0). Both joint tails are bidimensional as they are
the intersections of univariate tails. In the thd@mensional “negative” tail, defined by
d = —(0,0,0pp) andd = —(osp, 0¢;, 0), the correlation coefficients between S&P 500
and CRB index and between S&P 500 and the GBP/ B}&bange rate were typically
higher than the coefficients in the bidimensioékt Interestingly, these coefficients fall
in a except fora = 0.01 contrasting with the trend in the bidimensil “negative” tail.
The tail correlation in Sample B is typically low#ran in Sample A, lying below 10%,
with the exception of 1% significance. Finally, ttiependence coefficient decreases in

for both samples and all directional vectors.

Although the results foe = 0.01 seem to contradict the general trend inescases, their
significance is limited as they were computed fremmall sets of observations. Generally,
if the probabilities of the evemd; and the even#l, area and these events are
independent, then the expected proportion of olasiens in the intersectiafy N A, is
a?. Specifically, for our sample of ca. 10,000 obstions,a=0.01 and under the
independence affVaR? andMVaR4, we expect 10000.07 = 1 observation in the joint

tail MVaR? n MVaRZ.
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Figure 4 illustrates succinctly the co-dependeretevben the risk factors S&P 500 index,
CRB index and GBP/USD exchange rate. The interdgrese appears to be particularly
strong at the 1% significance level although oweed of small samples applies also in
this case. Hence, we focus on the results for B8 kignificance level. Whilst the

dependence coefficient betweli aR% andMVaR< does not depend, by definition, on
the order of directional vectors, i.e¢, (fz, d, d) =y, (fz, d,d), the conditional MVaRs

may depend on this order. For example, the proipaloif exceeding the 10% SP-VaR
(10% DP-VaR) increases by 25.7% when the 10% DP-YER6 SP-VaR) has been
exceeded. On the other hand, the conditional 109%¥&® (conditional 10% DP-VaR)

increases by 13% (17%) when the 10% DP-VaR (10%&R) has been exceeded. This
difference in conditional VaRs indicates an asynmimeeaction to negative shocks. Note
that the same framework can be applied to meagstemic risk e.g., by using S&P 500

index as the “system” and a particular stock askafactor.

[Figure 4]

Finally, Table 4 summarizes our results on integeral risk dependence for the time-
lagged log returngr;,r;:,41,7:42) On the S&P 500 index. Although the three series,
computed from the same data as in the previousiexgets, are essentially uncorrelated,
there is a strong dependence in the tails. For pkagnthe probability that the return
tomorrowr; ., will fall below the unconditional 10% VaR is 63%gher, when the return
todayr; fell below the unconditional 10% VaR. The conditb MVaR, on the other

hand, increases by 50.5% in absolute value, whedittoned on the same event. The tail
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dependence tends to decrease with highier accordance with our previous results.

Therefore, the temporal clustering of risk appéaise stronger for more extreme events.

[Table 4]

8. Conclusions

The focus of the financial literature has recerghjfted to aggregating the multiple
sources of risk. While interesting in their own htig such approaches cannot
comprehensively answer questions which are paraméam pricing, hedging and
portfolio decisions. Interesting answers can beaiobd by considering the individual
sources of risks jointly. We propose a simple alekilble framework with several
statistical end economic applications. This frameéwallows for an evaluation of joint
density forecasts, which is relatively straightfard even in higher dimensions.
Moreover, it also allows for an evaluation of sulgnsities over specific areas as defined
by the user’s interest. This is particularly coneah considering recent interest in the
modelling of extreme events. A straightforward aggilon of the proposed framework is
the evaluation of the multidimensional Value atkasd the measurement of dependence

in risk. We illustrate such an application for &akfinancial data in Section 7.

Finally, the data-intensive requirements of the MRV&amework make it natural for
employing high-frequency returns to examine th&k rdependence. It would also be
interesting to investigate the potential of the NRiaamework for minimum-VaR portfolio

decisions. We intend to pursue both these avemueure research.
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Appendix A — Proofs
Proof of Proposition 1:

=! x€0(d,v)>x/d;=v, Vd; # 0 > min;q,.o{x;/d;} = vi(x) = v

= vi(x)d;/d; = x}/d; = v, Vd; # 0= x% € 0(d, ).

O: x%eo(dv)=xt/d; =v=> vi(x)d;/d; =v, Vd; #0

> ,I‘riliilo{xi/di} >v=>x/di=v, Vi:d; #0= x€0(d,v),
La;

wherex? = v(x) - d, v*(x) = mingo{x;/d;} were defined in (3).

Proof of Corollary 1:

Uniformity on [0,1] follows from Corollary 2 and from the fact thaff(MVaRg) =
Pry(v4(X) = v?*(f,a)) = a for anya € [0,1], wheref (F) is the PDF (CDF) of the DGP
for X. As the uniformity holds for any CDF;, the distribution of the scores at dais
U[0,1] and independent of the distribution of the scatemny other date # t¢.

Proof of Corollary 2:
=  x € MVaR% = x;/d; = v4(f,a), Vi:d; # 0 >
min (x;/d;) = v*(x) 2 v*(f,a) = 2 (v (), ) < z*(v*(f,0).f) = a

O: z¢w(x),f) <a=z'w(f, a),f) = vi(x) = min.qofx;/d;} = vi(f,a) =
x;/d; = v4(f,a), Vi:d; # 0 = x € MVaR{,

where v?(x) = ming.o{x;/d;} was defined in (3).

Appendix B — Multivariate GARCH model and Estimation Method

To obtain forecasts of the time-varying three-disienal covariance matrix we employ
the simplified GARCH (S-GARCH) model of Harris €t €2007). Note that for our

parametric specifications MN and MT distributiomyvariance matrix together with the
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degrees of freedom and means fully define the RIF.choice can be explained on the
basis of the ability of this model to handle t-dmited residuals and its ease of
estimation. The S-GARCH involves the estimatioroofy univariate GARCH models,
both for the individual return series and for tiiensand difference of each pair of series.
The covariance between each pair of return sesifsen imputed from these conditional
variance estimates. First, the conditional varianege estimated using univariate
GARCH(1, 1) models:

Tie = WitEie, i =SP,CI,DP (A1)

0F = Qo+ ;1071 + A12€% 11, i =SP,CI,DP (A2)

Then six auxiliary variables,. , = r;,+r;, andr_, =1, — 75, i,j = SP,CI,DP,i # j
are constructed, and univariate GARCH(1, 1) modslksd to estimate the conditional

variances of these.

T = W+ &gy l=+,- (A3)

2 2 2 —
Oit = Qo+ A1100;1 + Q127 t—1, l=+,— (A4)

where the residuals; i = SP,CI,DP,+,— are either normal or t-distributed. The

conditional covariance between each pair of cuiesnis then imputed using the identity

gije = (1/0) (03 — 02,) (AS)

Like many other multivariate GARCH models, the Sf&2H does not guarantee that the
conditional variance-covariance matrix is positsemi-definite. However, for all three
pairs, the estimated correlation coefficients wienend to be between -1 and +1 for all
observations. We ML-estimate the S-GARCH parametaisd the degrees of freedom
parameter for the t-distributed residuals using ¢inéire sample. We then use these
estimates to obtain the forecast of the covariamagix fort = 3001, ...,10097. On the
other hand, the AED at time= 3001, ...,10097, was defined by the sequence of the

most recent 3000 observations. Note that all tMBé&s vary over time.
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Appendix C — Parameter Estimation Uncertainty

It is well known that the presence of estimatecapaaters may complicate test inference.
For example, the Kolmogorov test can be difficoltapply in the presence of estimated
parameters, particularly for multivariate data witlany parameters (see, for example, Bai
and Chen, 2008). Following other scholars (Diebaidl Mariano, 1995; Christoffersen,
1998; Diebold et al. 1998, 1999; Clements and Sn#000, 2002), we consider the
forecasts as primitives and ignore the method eyepldo obtain them. In many situations
this may be an acceptable practice. Firstly, maagsidy forecasts are not based on
estimated models. For example, the large-scale ehatkk models at many financial
institutions combine estimated parameters, calorglarameters and ad-hoc modifications
that reflect the judgment of management. Anotheangde is the density forecasts of
inflation of the Survey of Professional Forecast@ee Diebold et al., 1998). Moreover,
previous research suggests that parameter estimatncertainty is of second-order
importance when compared to other sources of imace@s such as model misspecification
(Chatfield, 1993). Further, Diebold et al. (1998hdf that the effects of parameter
estimation uncertainty are immaterial in simulatetudies geared toward the relatively
large sample sizes employed in financial studied s1$ the present one.

When parameter estimation cannot be ignored, tblelgm can be approached as follows.
Firstly, for time-invariant forecasts, suitable iggttors can often be found that lead to
pivotal test statistics e.g., the “super-efficieastimators (see Watson, 1958; Birch, 1964).
Secondly, an important class of models compris@®ervarying hypothesised distribution
with a well-defined structure on the co-evolutidntioe variables e.g. VAR and GARCH
models. In this case, one way of accounting foapeter estimation uncertainty is to apply
the K-transformation (Khmaladze, 1981), which allows ftire construction of a
distribution-free test statistic. In principle, tietransformation can be applied to the JDT-
test along the lines of thé-test in Bai (2003) and Bai and Chen (2008). Its potation,
however, may be cumbersome for non-standard MDFmll¥, in the case of arbitrary
time-varying MDFs — for which our general model garticularly suited — parameter
estimation is infeasible as only one observatiodravn from the MDF at each date. As
such, the only practical solution is to assume thathypothesised model is correct under

the null.
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Table 1: Synchronized Daily Returns

Mean %
Stand Dev
Skewness
Kurtosis
B-J
ARCH4

S&P 500
CRB
USD/GBP

S&P 500 CRB Spot
Index
0.023 0.014
1.082 0.444
-1.086 0.332
27.523 17.532
12070.545 12949.687
692.510 703.646

Correlations

S&P 500 CRB
1.000 0.075
1.000

USD/GBP

-0.004
0.603
-0.095
5.029
10658.712
798.691

USD/GBP
0.015
0.114
1.000

Notes: The table reports the mean, standard demjaskewness, excess kurtosis, Bera-
Jarque statistic, ARCH4 statistic and the correfatmatrix for the synchronized log

returns for S&P 500, CRB Spot Index and the USD/GBPhange rate for the sample
period from 3 January 1972 to 18eptember 2010 (10097 synchronized daily

observations).
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Table 2: Overall and directional accuracy of MN, MT and AED distribution

Nom. Sign./d  —(osp, 0c1,0pp)  (0sp, Tcr, Opp) (gsp, 0,0) —(0,0¢1,0)
MN p-val. 0 p-val. 0 p-val. 0 p-val. 0
a =001 0.017 (0) 0.016 (0) 0.015 (0) 0.014 (0)
a = 005 0.043 (0) 0.040 (0) 0.039 (0) 0.042 (0)
a =010 0.063 (0) 0.071 (0) 0.071 (0) 0.074 (0)
a =025 0.346 (0) 0.334 (0) 0.180 (0) 0.184 (0)
MT(2.7) p-val. 0 p-val. 0 p-val. 0 p-val. 0
a =001 0.010 (0.763 0.010 (0.689) 0.008 (0.021) 0.01449)
a = 005 0.049 (0.231) 0.048 (0.076) 0.052 (0.156) 0.04858)
a =010 0.074 (0) 0.086 (0) 0.108 (0.01) 0.086 (0)
a =025 0.192 (0) 0.186 (0) 0.211 (0.0) 0.224 (0)
AED p-val. 0 p-val. 0 p-val. 0 p-val. 0
a =001 0.012 (0.03) 0.014 (0) 0.013 (0.01) 0.013 (0.01)
a =005 0.055 (0.02) 0.057 (0) 0.055 (0.02) 0.056 (0.01)
a=010 0.095 (0.17) 0.095 (0.14) 0.105 (0.13) 0.114 (0)
a =025 0.245 (0.34) 0.250 (0.87) 0.253 (0.41) 0.2527p

Notes: The table reports the p-values of theaest of uniformity for the z-scores (bold),
the exception rates i.e., the proportion of tinfesfbrecasted MVaR is exceeded and the
p-values of the Kupiec statistic in parenthesesn@a period: from 4 July 1983 to 14
September 2010 (7097 synchronized daily observgtidrhe degrees of freedom 2.7 for
the MT distribution were ML estimated, given sampleans and covariances.
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Table 3: Risk Dependence for S&P 500, CRB Index andSD/GBP exchange rate

Nominal
Probab.

a =001
a = 005
a =010
a =025

a =001
a = 005
a =010
a =025

d = (0sp,0,0) d = —(0,0¢,0) d = —(0,0,0pp)
d =(0,0¢,0) d = —(0gsp,0,0) d = —(0sp, ¢, 0)
JDT Dep. Cond. JDT Dep. Cond. JDT Dep. Cond.
Correl. Coeff. MVaR Correl. Coeff. MVaR Correl. Coeff. MVaR
Sample A
.352 0.495 2.851 .012 0.866 1.654 .34/.08 0.844.232
.193 0.291 0.490 123 0.434 1.089 .58/.28 0.354 724.
101 0.151 0.182 225 0.265 0.483 .45/.20 0.223 3470.
.081 0.067 0.148 243 0.086 0.461 .27/.21 0.046 164.
Sample B
.061 0.400 0.077 -.144 0.600 0.099 -22,-1 0.90@.097
-.012 0.250 0.067 .043 0.310 0.078 0,.01 0.490 102.
-.023 0.240 0.098 .012 0.250 0.106 -050 0.280.114
.021 0.120 0.127 .020 0.110 0.132 0,.04 0.130 10.14

Notes: The table reports tail correlation, dependeroefficienty,(fz, d,d) and

conditional MVaR CMVaR%? for the empirical distribution functiorf; , nominal
significance levela= 1%, 5%, 10%, 25% and directional vectdrandd.
Sample Aconsists of synchronized log returns for S&P 58P)( CRB Spot Index (CI)
and the USD/GBP exchange rate (DP) with megan (usp, tcr, Upp) @and standard
deviationo = (agp, a¢;, opp) as reported in Table 1. Observations were obtafnad

Datastream and cover the period from 3 January 187”4 September 2010 (10,097)

synchronized daily observations.

Sample B consists of 100,000 observations that were geseritom the multinormal
N(u,2) wherew = (usp, Ucr, Upp) @nd X is the empirical covariance matrix computed
from Sample A.
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Table 4: Intertemporal Dependence for S&P 500

(O', 0'0) d= —(0, Ot+1 0) d= _(0'0' 0t+2)

d =
d = (0,0¢41,0) d = —(0,,0,0) d = —(0y, 041, 0)

Nominal  JDT Dep. Cond. JDT Dep. Cond. JDT Dep. Cond.
Probab. Correl. Coeff. MVaR Correl. Coeff. MVaR Correl. Coeff. MVaR

a =001 .64 4.94 1.155 A7 7.91 6.808 -.16,.016.92 6.808

a = 005 .54 0.98 0.447 49 153 0.637 .09,32 0.94 0.491
a =010 43 0.43 0.247 .29 0.63 0.505 .20,.35 0.34 0.250
a =025 24 0.03 0.042 31 0.17 0.314 .14,33 0.11 0.184

Notes: The table reports tail correlation, dependeroefficienty,(fs, d,d) and

conditional MVaR CMVaR%? for the empirical distribution functiorf; , nominal
significance levelsi= 1%, 5%, 10%, 25% and directional vectdrandd.

The sample was obtained from Datastream and cedsist S&P 500 log returns
(14, Te41, Teq2) for t=1,...,10,095 (3 January 1972 to $@ptember 2010) with means
(Ue) Uer1s Bes2) = (0.0236,0.0237,0.0237), standard deviatiofts, 6411, 0r42) =
(1.08299, 1.08303, 1.08302) and the correlation rimat((1,0.004,-0.039),
(0.004,1,0.004), (-0.039, 0.004,1)).
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Figure 1: Directed linev-d and a JIDTO(d, v,) in R?.
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Figure 2: Projections on the directed linev - d in R?.
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Figure 3: MVaR? as an intersection of unidimensional VaRs.
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Figure 4: Conditional MVaRs and dependence coeffients.

a=0.01 a=0.1
0.50 0723
Sp 223 1286 . Cl Sp e
1.65 0.48
2.19 165 0.13 0.46
9.891 7.91 0.257 0.762
1.12 0.37
1.23 0.17
DP DP

Notes: Conditional MVaRs and dependence coefficients far tisk factors S&P 500
stock index (SP), CRB spot index (CI) and USD/GBPhange rate (DP) computed for
vectors—(asp,0,0), —(0,0¢;,0), —(0,0,0pp) at 1% and 10% significance level. The
number in the middle of each double-arrow linehis tlependence coefficient between
the corresponding risk factors. The number closa tisk factor on a double-arrow line
is this factors conditional MVaR, given the occuce of thex-VaR for the risk factor on

the opposite side of the same line.
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