
 

 

 

 

 

Is There Systematic Variation in Market Efficiency? 
 

 

Dominik M. Rösch, Avanidhar Subrahmanyam, and Mathijs A. van Dijk
*
 

 

  

 

March 2013 

 

 

Abstract 

Market efficiency remains central to the study of financial markets. We examine how the degree 

of efficiency varies across stocks and over time.  We find: (i) systematic variation in efficiency 

(measured using short-horizon return predictability and put-call parity deviations) across 

individual stocks, and (ii) systematic variation in aggregate efficiency across different efficiency 

measures (short-horizon measures as well as longer-horizon measures based on monthly 

reversals and momentum). The systematic component of market efficiency varies through time 

with aggregate funding liquidity, frictions that impede arbitrage, and variables that affect market-

making efficacy. Our results indicate that microstructural efficiency measures share a common 

factor with broader measures of market efficiency and quality, and imply that policies that 

impact funding liquidity can systematically impact variations in this factor. 
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Financial markets serve many roles. First, they allow individuals to reallocate consumption 

across time by investing for the future at an appropriate expected return. Second, they allow 

people to optimize their reward to risk ratios based on their preferences. Third, financial market 

prices serve as proxies for aggregate investor beliefs and thus convey important information to 

financial managers and policy makers. It goes almost without saying that the efficacy of all of 

these roles depend on the financial market being relatively free of frictions and of high quality. 

In such an ideal market, prices accurately reflect fundamentals, and, in doing so, obey the law of 

one price that assets with identical cash flows sell for the same price. Such a market is commonly 

referred to as an “efficient market” (Fama, 1970). 

 There are a number of ways to capture the efficiency of a market. For example, the 

microstructure literature measures efficiency via metrics such as intraday return predictability 

and variance ratios (Bessembinder, 2003; Chordia, Roll, and Subrahmanyam, 2008). One may 

also consider the extent to which markets obey the law of one price (such as put-call parity 

deviations—viz. Finucane, 1991; Cremers and Weinbaum, 2010), or measure the extent to which 

longer-term return anomalies prevail (for example, the well-known reversal and momentum 

effects of Jegadeesh, 1990, and Jegadeesh and Titman, 1993). In a perfect market, prices would 

be efficient at both short and long horizons, and also obey the law of one price.  

 However, the enforcement of these attributes of a perfect financial market requires 

arbitrage. But, any arbitrage activity – whether risky or comparatively risk-free – requires 

capital, and because of frictions, arbitrage may not be perfect at all times or across all securities, 

as pointed out by Shleifer and Vishny (1997). These frictions can take the form of market 

illiquidity, limited capital, short-sale constraints, and volatility, and the severity of such frictions 
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may vary considerably over time.
1
 For example, earlier literature suggests that secular and non-

secular changes in liquidity influence short-horizon market efficiency, where inefficiency is 

defined by the extent of short-horizon return predictability from past order flow (Boehmer and 

Kelley, 2009; Chordia, Roll, and Subrahmanyam, 2005, 2008). Other work demonstrates that 

monthly equity return predictability and the magnitude of mispricings exploited by hedge funds 

in relative-value trades vary over time with constraints on arbitrage capital (Akbas, Armstrong, 

Sorescu, and Subrahmanyam, 2010; Mitchell and Pulvino, 2012).  

The efficiency of price formation is also likely to differ across different securities. It is 

well-known that there is substantial cross-sectional variation in the liquidity of individual stocks 

(e.g., Benston and Hagerman, 1974; Brennan and Subrahmanyam 1995), and in other frictions 

that impede arbitrage such as short-sales constraints (Nagel, 2005). Thus, there are sound reasons 

to believe that efficiency metrics such as short-horizon return predictability and put-call parity 

deviations also exhibit considerable variation across individual securities. 

The idea that efficiency varies both over time and across securities raises the question to 

what extent time-variation in the price efficiency of individual securities is systematic. While 

market efficiency depends on liquidity, the latter has firm-specific as well as systematic 

components (Chordia, Roll, and Subrahmanyam, 2000; Hasbrouck and Seppi, 2000). In addition, 

time-variation in liquidity depends on macroeconomic funding constraints (Brunnermeier and 

Pedersen, 2009) as well as variables that influence market making behavior, such as return 

volatility and net order imbalances (Chordia, Roll, and Subrahmanyam, 2002). More generally, 

systematic fluctuations in the severity of frictions that hamper arbitrage may lead to systematic 

variation in efficiency across individual securities. Furthermore, since such fluctuations in 

                                                 
1
 See, for example, Shleifer and Vishny (1997), Mitchell, Pulvino, and Stafford (2002), and D’Avolio (2002) for 

theoretical and empirical explorations of how limits to arbitrage can cause market inefficiencies to persist. 
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frictions may similarly affect microstructural market quality measures (such as short-horizon 

return predictability), efficiency measures related to the law of one price (such as put-call parity 

deviations), and measures of longer-term return anomalies (such as reversal and momentum), 

they could also give rise to systematic variation in efficiency across different efficiency 

measures. 

Motivated by these observations, in this paper, we do the following. We first compute 

daily market efficiency measures for individual stocks based on three metrics: short-horizon 

(intraday) return predictability based on past order flow, intraday return autocorrelation, and put-

call parity deviations using a substantial sample of NYSE stocks over a long sample period of 

fifteen years.
2
 We then construct market-wide measures of efficiency from the individual stock 

measures and estimate the extent of systematic variation in market efficiency (or “commonality 

in efficiency”) across individual stocks, as the R
2
s of a “market model” regression of individual 

stock measures on the market-wide measure. These analyses show that time-variation in market 

efficiency, as measured by each of the three short-horizon metrics, has a material common 

component. This common component indicates that market efficiency is prone to systematic 

variation, providing pointers that not only might liquidity be affected across the board in a 

financial crisis, but so might pricing efficiency. 

Our next goal is to analyze the degree of systematic variation in aggregate market 

efficiency across different efficiency metrics (or “commonality in efficiency” across efficiency 

metrics). We relate the short-horizon measures of market-wide efficiency to a variance-ratio-

                                                 
2
 Busse and Green (2002) find that news reports about individual stocks on the financial television network CNBC 

are incorporated into stock prices within one to two minutes. Epps (1979) studies price formation for firms in one 

industry (automobiles). He finds rapid (but not instantaneous) adjustments across firms to common industry news. 

Note that our measure of market efficiency is not mechanically related to liquidity. For example, illiquidity is caused 

by the presence of informed agents in Kyle (1985) but prices are not predictable from order flow. 
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based measure of aggregate market quality,
3
 and to measures of market-wide efficiency based on 

longer-horizon anomalies, namely monthly return reversals (Jegadeesh, 1990) and momentum 

(Jegadeesh and Titman, 1993).
4
 We find that both short- and long-horizon measures of market-

wide efficiency are mostly positively cross-correlated and the majority of these correlations are 

significant, suggesting a pervasive market efficiency factor.
5
 We extract the factor via principal 

component analysis from the monthly time-series of our market-wide efficiency measures and 

show that this first component explains about one-third of the joint variation in our market 

efficiency measures.  

We next propose that this systematic component varies across time for three reasons: (i) 

variation in funding liquidity proxied by variables such as hedge fund flows and short rates, (ii) 

variation in frictions impeding arbitrage such as short-horizon volatility and bid-ask spreads, and 

(iii) variation in microstructural aspects that affect market making efficacy such as trading 

activity. Our analysis indicates that the systematic component of market efficiency depends on 

all three classes of determinants. For example, we document that the systematic component is 

strongly related to hedge fund flows, the TED spread (a common indicator of funding liquidity), 

returns to the banking sector, short-horizon volatility, and the aggregate number of transactions 

                                                 
3
 This efficiency metric is based on the observation that for a random walk price process, the variance of long-

horizon returns is n times the variance of short-horizon returns, where n is the number of short-horizon intervals in 

the longer horizon; see, for example, Bessembinder (2003). 
4
 Fama and French (1996) point out that momentum is left unexplained by traditional risk-based factor models, 

pointing to the notion that it is a form of inefficiency; Fama (1998) argues that momentum is among very few 

anomalies that survives closer scrutiny. Cooper (1999) and Mase (1999) suggest that investor overreaction can 

account for monthly return reversals, suggesting that this anomaly also is a form of market inefficiency. We do not 

include very long-term reversals (DeBondt and Thaler), because of controversy about the power of statistical tests 

documenting this phenomenon (Fama, 1998).  
5
 Griffin, Kelly, and Nardari (2010) examine market efficiency measures across countries, but do not examine 

common variation in the measures over time. In another significant paper, Pasquariello (2012) considers deviations 

of arbitrage bounds across countries in foreign exchange markets and American Depositary Receipts (or ADRs), but 

does not relate these bounds to microstructural efficiency measures or funding constraints.  
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in the stock market. We find that almost two-thirds of the time-variation in the systematic 

component of efficiency can be explained by our regressors.  

Our demonstration that there is systematic variation in market efficiency is important for 

several reasons. First, we show that market efficiency is not a static concept: it exhibits 

significant time-variation and also has a systematic component, across individual stocks and 

across short- and long-horizon metrics. Second, our results link the microstructure literature, that 

has mostly concentrated on short-horizon market quality measures of efficiency, to the asset 

pricing literature that addresses longer-horizon reversals and momentum. Third, we go beyond 

the well-known link between market liquidity and funding liquidity and demonstrate a further 

connection between funding liquidity and common variation in the efficiency of price formation. 

The latter result suggests that policy attempts to increase funding liquidity not only may have a 

direct impact on trading costs but also systematically affect the efficiency of stock market prices 

and, in turn, the efficacy with which resources are allocated. Fourth, our results suggest a new 

source of uncertainty in asset markets, that there are pervasive dynamic shifts to market 

efficiency. 

 This paper is organized as follows. In Section 1, we discuss the estimation of 

microstructural efficiency measures. Sections 2 and 3 respectively estimate these efficiency 

measures and document systematic variation in these measures, as well as in daily put-call parity 

deviations, across individual stocks. Section 4 demonstrates that short- and long-horizon 

measures of efficiency have a common component; and analyzes determinants of time-series 

variation in this component. Section 5 concludes. 
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1. Microstructural efficiency estimation: Data and methodology 

We begin by estimating efficiency measures obtained from intraday data for individual stocks: 

the predictability of returns from order flow and from past returns (i.e., return autocorrelation). 

Following Chan and Fong (2000), Boehmer and Wu (2007), and Chordia, Roll, and 

Subrahmanyam (2005, 2008), we use short-horizon return predictability from past order flow and 

short-horizon return autocorrelation as inverse indicators of microstructural efficiency. One 

immediate issue that arises is whether predictability of intraday returns from order flow and 

returns is synonymous with market illiquidity. But, we note that illiquidity does not necessarily 

imply any return predictability from order flow or past returns. In Kyle (1985), for example, 

markets are illiquid but prices are martingales because market makers are risk-neutral. Return 

predictability from order flow will arise, however, if market makers have limited risk-bearing 

capacity.
6
 In this case agents such as floor brokers and floor traders will be able to conduct 

arbitrage trades, which will act to mitigate the predictability. So, in a sense, our measure of 

predictability, or lack thereof, is a metric of the efficacy of such short-horizon arbitrage. 

To estimate microstructural efficiency, we obtain data on all trades and quotes (time-

stamped with microsecond precision) as well as their respective sizes for individual U.S. stocks 

from the Thomson Reuters Tick History (TRTH) database. Our data start in 1996, which is the 

earliest year available in the TRTH database, and run till the end of 2010. Our sample consists of 

all NYSE stocks that were an S&P 100 constituent at any time during 1996-2010. We drop one 

stock (Capital Cities Inc.) since it has only one month of data over this period. 

We discard trades that fall outside the continuous trading session (9:30 am till 4:00 pm 

EST) on the NYSE (in total 2,572,874 trades). We also discard trades with a negative price 

                                                 
6
 See Stoll (1978). Chordia and Subrahmanyam (2004) show that positively autocorrelated imbalances induce a 

positive relation between returns and lagged imbalances. 
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(2,395 trades), or a price that is more than 10% different from the trade price of the ten 

surrounding trades (137 trades). We further drop trades of more than 100,000 shares (543,767 

trades), since large trades are often negotiated before they get reported (Glosten and Harris, 

1988). Similarly, we discard quotes outside the continuous trading session (3,089,002 quotes), 

quotes with a non-positive bid or ask price (1,409 quotes), quotes of which the bid price exceeds 

the ask price (1 quote), and a number of outliers (1,654,494 quotes). We consider quotes to be an 

outlier when the bid (ask) price is more than 10% different from the average bid (ask) price of 

the ten surrounding quotes. We also classify quotes as outliers when the ask price is more than 

US$5 higher than the bid price, or when the proportional quoted spread is greater than 25%. We 

note that while the absolute numbers of trades and quotes discarded because of these data screens 

are large, they are small relative to the total number of trades and quotes in the sample. For 

example, our data screens lead us to discard a mere 0.2% of all trades in the sample. 

Our final sample consists of 156 stocks and 1,541,744,764 trades. To prevent 

survivorship bias, we use data for these stocks over the entire period for which we have data 

during 1996-2010, and not only during the period over which they were an S&P 100 constituent. 

We sign trades using the Lee and Ready (1991) algorithm.
7
 Because of a decrease in reporting 

errors since 1998 (Madhavan, Richardson, and Roomans, 2002), we do not use a delay between a 

trade and its associated quote. We are able to sign 1,541,265,557 trades, which corresponds to 

99.97% of all trades in our final sample. 

                                                 
7
 The Lee/Ready algorithm classifies a trade as buyer- (seller-) initiated if it is closer to the ask (bid) of the 

prevailing quote. If the trade is exactly at the midpoint of the quote, the trade is classified as buyer- (seller-) initiated 

if the last price change prior to the trade is positive (negative.) Of course, there is inevitably some assignment error, 

so the resulting order imbalances are imperfect estimates. Lee and Radhakrishna (2000) and Odders-White (2000) 

indicate that the Lee/Ready algorithm is quite accurate for NYSE stocks, suggesting that assignment errors should 

have minimal impact on the results. 
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We estimate the short-horizon efficiency of each individual stock for each day in the 

sample based on regressions of the returns over short intervals within the day on order imbalance 

(or on returns) in the previous interval. When estimating efficiency this way, we face a trade-off 

in choosing the length of the intraday intervals over which we measure returns and order 

imbalances. On the one hand, the intervals need to be long enough to contain trades to calculate 

the order imbalance. On the other hand, the intervals need to be short enough to capture 

predictability in returns. As shown by Chordia, Roll, and Subrahmanyam (2005), “convergence 

to market efficiency” takes less than 30 minutes in 1996 and around five minutes in 2002. Since 

our sample period lasts till 2010, we have to use intervals shorter than five minutes to still 

capture meaningful predictability in the later part of the sample period. However, estimating 

predictive regressions over much shorter horizons (say, 30-second intervals) would lead us to 

discard a substantial part of the stock-day observations in our sample (especially in the early 

years of our sample) due to an abundance of intervals without trades.  

In light of these considerations, we estimate predictability based on intraday returns and 

order imbalances measured over one-minute intervals (with a robustness check based on two-

minute intervals). This leaves us with a sufficient number of observations even in the first few 

years of the sample period (for example, the stocks in our sample have on average 155 one-

minute intervals per day with at least one trade in 1996), while we take into account the increase 

in the speed of convergence to market efficiency over the sample period as a result of, e.g., 

improved liquidity and the advent of algorithmic trading. 

 We estimate the extent of short-horizon return predictability from order flow for each 

stock i and day d in the sample based on the following regression estimated using intraday data 

aggregated over one-minute intervals: 
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ditdididitdi OIBbaR ,1,,,,,,   ,        (1) 

where Ri,d,t is the return of stock i in one-minute interval t on day d based on the mid-quote 

associated with the last trade to the mid-quote of the first trade in the interval (to avoid the bid-

ask bounce), and OIBi,d,t-1 is the order imbalance for the same stock and day in the previous 

interval t-1, computed as the difference between the total dollar amount of trades initiated by 

buyers and sellers (OIB$). We refer to the efficiency measure based on this regression 

specification as the OIB predictability measure. For robustness, we also report results for three 

alternative measures of intraday return predictability from order flow, each named after the 

single feature that distinguishes them from the OIB predictability measure. The allquotes 

measure is based on returns computed using all quotes within each interval rather than only using 

quotes associated with trades; the 2minutes measure is based on two-minute instead of one-

minute intervals; and the oib# measure is based on order imbalance expressed in number of 

trades rather than dollars (OIB#). We also present and discuss the results using one-minute return 

predictability from past returns instead of past order flow and label this the autocorrelation 

measure. 

 We require at least one signed trade in both the interval over which we calculate the 

return as well as the previous interval. This leads us to drop a non-negligible fraction of the 

intraday intervals in the early years of the sample period, but since 2000 almost all stocks have at 

least one trade in almost all of the intraday intervals. We also discard stock-days for which we 

have fewer than 20 one-minute intervals with valid data on the stock return within that interval 

and on the OIB or return in the preceding interval (in total 9,082 stock-day observations), and 

days for which TRTH reports a data gap that overlaps with the continuous trading session (in 

total 56 days). 
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We use the R
2
s of the efficiency regressions in equation (1) as measures of the efficiency 

of individual stocks, where a higher R
2
 indicates a lower degree of efficiency. We then estimate 

the degree of systematic variation in efficiency for each stock i as the R
2
 of the following 

regression (Karolyi, Lee, and van Dijk, 2012): 

midmimidmimidmimimidmi MktEffMktEffMktEffEff ,1,,,1,,,,,,,,,    ,       (2) 

where ∆Effi,m,d is the change in the efficiency of stock i on day d of month m (based on the R
2
 of 

the daily efficiency regression in equation (1)), and ∆MktEffi,m,d is the change in market-wide 

efficiency (defined as the equally-weighted average efficiency across all stocks in our sample 

excluding stock i). We estimate equation (2) monthly based on daily efficiency estimates within 

the month. Based on the five different short-horizon efficiency measures, we also obtain five 

different “commonality in efficiency” measures. For these regressions, we drop stock-months 

with fewer than 15 days with valid individual stock efficiency estimates within the month (in 

total 644 months for 9 different stocks). In unreported robustness tests, we estimate equation (2) 

based on efficiency levels rather than changes and based on contemporaneous market efficiency 

as the only independent variable (that is, no lead and lagged market-wide efficiency), and obtain 

similar results.  

 Table 1 presents summary statistics of the variables constructed based on intraday trade 

and quote data from TRTH that serve as inputs to our regressions. The table reports cross-

sectional summary statistics (the mean, standard deviation, as well as the 25
th

, 50
th

 (median), and 

75
th

 percentile across the 156 stocks in our sample) of the time-series averages by stock of these 

variables. The average number of trades per day is around 3,000. We note that there is 

considerable variation in the number of months individual stocks are in the sample. The last row 

of Table 1 shows that, on average, stocks are in the sample for 144 months (that is, we are able to 
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estimate the commonality in efficiency measure for these months). First Interstate BNCP is in 

the sample for only three months, while 58 stocks are part of the sample during the entire sample 

period 1996:02-2010:12 (179 months). In light of the dramatic increase in trading activity over 

this period (e.g., Angel, Harris, and Spatt, 2011; Chordia, Roll, and Subrahmanyam, 2011), the 

average number of trades per day is likely to be substantially lower for stocks that are only in the 

sample during the earlier years. In other words, some of the cross-sectional variation highlighted 

by the summary statistics in Table 1 is due to variation across stocks in the calendar period over 

which data are available. The average daily trading volume is an average of 0.097 or US$97m, 

with an interquartile range from 0.039 to 0.130. The mean and median mid-quote returns are 

both equal to 0.01 basis point, which corresponds to four basis points per day. There is a slight 

positive average order imbalance over the one-minute intervals in our sample. The average 

proportional effective bid-ask spreads in our sample is 0.13%, with a median of 0.09%.  

 The final three rows of Table 1 provide information on the number of observations 

included in our analysis and on the impact of our data filters. We require at least 20 one-minute 

intervals per day with valid data on the stock return within that interval and on the OIB (or 

return) in the preceding interval. The average number of days we discard per stock is relatively 

modest at 61, and most of these days are concentrated in the early years of our sample period. 

Our data filters allow us to estimate the efficiency of the 156 stocks in our sample for on average 

2,972 days over the period 1996-2010.  

 

2. Estimating the microstructural efficiency of individual stocks over time 

Table 2 presents the results of our regressions to estimate the microstructural efficiency of 

individual stocks at the daily frequency. We measure the degree of efficiency using regressions 
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to predict short-interval individual stock returns based on lagged order imbalance or lagged 

returns. As described in Section 1, we run these regressions by stock-day based on intraday data. 

Table 2 shows the results of four alternative ways of measuring return predictability from order 

flow (OIB predictability, allquotes, 2minutes, and oib#) as well as the autocorrelation measure 

which is based on regressions of one-minute mid-quote returns on lagged mid-quote returns. 

 We find that OIB positively predicts future returns over short intervals. The average 

coefficient on lagged OIB$ (expressed in billions of dollars) across the approximately 460,000 

stock-day regressions is quite similar across the first three short-horizon efficiency measures in 

Table 2, ranging from 0.511 to 0.997. The coefficient on lagged OIB for the fourth efficiency 

measure cannot be directly compared to these numbers since OIB in these regressions is 

expressed in number of trades instead of dollars, but it is also positive. Its magnitude of 0.664 is 

in fact similar to that of the coefficients on lagged OIB in the first three columns of Table 2, 

since OIB$ in the first three columns is scaled by 10
9
 and OIB# in the fourth column is scaled by 

10
4
 and since Table 1 shows that OIB# is roughly 10

5
 as large as OIB$. We also note that the 

return autocorrelation estimate for the full sample is positive at 0.025.  

The first number in parentheses below the average coefficient (“t-stat avg”) is the average 

t-statistic across all stock-day regressions, which is equal to 1.510 for OIB predictability, 0.821 

for allquotes, 0.850 for 2minutes, 2.189 for oib#, and 0.412 for autocorrelation. Although for all 

but one measure the simple average t-statistic does not exceed critical values associated with 

conventional confidence levels, these average t-statistics are nonetheless suggestive of non-

trivial return predictability over our sample period – especially considering that the t-statistics of 

the individual stock-day regressions can be based on as few as 20 intraday observations. This 

assertion is confirmed by the second number in parentheses in each column (“t-stat cross”), 
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which is the t-statistic computed from the cross-sectional distribution of estimated coefficients by 

stock-day, and which thus exploits the power obtained from the large cross-section of 

predictability regressions. These t-statistics are highly significant and range from 26.9 for 

allquotes to 424.0 for oib#.
8
 Table 2 also presents the fraction of stock-day regressions which 

yields a positive (“% positive”) and a positive and significant (“% positive significant”) 

coefficient on lagged OIB and on lagged returns. Depending on the efficiency measure, around 

70 to 90% of the estimated OIB coefficients are positive, and around 35 to 65% are positive and 

significant based on the individual t-statistics. For the return autocorrelation, about 60% of the 

coefficients are positive, and 30% are positive and significant. 

Overall, Table 2 provides evidence of considerable intraday return predictability in our 

sample over 1996-2010. The finding that our predictive regressions over one- and two-minute 

horizons show significant return predictability suggests that these regressions yield meaningful 

short-horizon efficiency measures that we can use to examine to what extent the efficiency of 

individual stocks varies over time and to what extent there is systematic variation in efficiency 

across different stocks.  

Figure 1 plots the monthly time-series development of the five market-wide 

microstructural efficiency measures, computed as the equally-weighted average across stocks of 

the equally-weighted average R
2
 across days within the month for each of the five daily 

efficiency regressions reported in Table 2. The figure shows that the efficiency of NYSE-listed 

S&P100 stocks has improved considerably over the sample period 1996-2010. For our OIB 

predictability measure, the market-wide R
2
 has declined from around 6% at the beginning of the 

                                                 
8
 These cross-sectional t-statistics (pooled t-statistics to be more precise) are based on the assumption that the 

estimation errors in the estimated coefficients are independent across the stock-day regressions for each efficiency 

measure. If, instead, these errors are positively correlated, the t-statistics need to be corrected downwards. 

Unreported results based on a random selection of calendar days and stocks from our sample suggest that the 

corrections are nowhere near large enough to make the cross-sectional t-statistics insignificant. 
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sample period to around 1% towards the end. These results indicate that the declining trend in 

short-term return predictability over the period 1993-2002 documented by Chordia, Roll, and 

Subrahmanyam (2008) has persisted since then, although the biggest improvement in efficiency 

during our sample period stems from the 1996-2003 period. The levels of the market-wide R
2
s 

differ across the five efficiency measures, but the time-series patterns are remarkably similar. 

The average correlation across the five monthly efficiency measures is 0.92. Although the 

dominant feature of time-variation in market-wide efficiency is the long-run downward trend, 

there is also substantial variation in market efficiency at a higher frequency. For example, there 

is a marked increase in the market-wide R
2
 for each of the five efficiency measures in July of 

2002 followed by a marked drop in the second half of 2002. 

 To illustrate the degree of cross-sectional variation in short-horizon efficiency 

across the stocks in our sample, Figure 2 presents yearly boxplots of the OIB predictability 

measure. For each stock, we compute the yearly efficiency as the average R
2
 of the daily OIB 

predictability regressions from Table 2 for that stock across days within the year. The boxes 

reflect the 25
th

, 50
th

 (median), and 75
th

 percentile of the yearly average R
2
s across the 156 stocks 

in our sample over the period 1996-2010. The top (bottom) of the line above (below) the boxes 

represent the highest (lowest) individual stock R
2
 below (above) the 75

th
 (25

th
) percentile plus 

(minus) 1.5 times the interquartile range. Clearly, efficiency does not only vary considerably 

over time, but also across stocks. For example, in 1996 the average OIB predictability R
2
 ranges 

from 2.4% for Mobil Corporation to 11% for Unisys Corporation and the interquartile range is 

1.5%. Furthermore, the extent of dispersion in efficiency across stocks also changes over time. 

For example, the dispersion is considerably larger in 1999 than in 2000, even though the median 

R
2
 is about the same in both years. The dispersion tends to be smaller in later years, but so is the 
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median R
2
. In relative terms, there is little indication that the dispersion in efficiency across 

stocks is lower in the second half of the sample period compared to the first. For example, the 

ratio between the interquartile range and the median R
2
 is 0.25 in 1996 and 0.42 in 2010. Figure 

2 also indicates that the time-series development of the market-wide efficiency measures in 

Figure 1 is not driven by outliers, as the boxplots follow roughly the same development as the 

market-wide OIB predictability graph in Figure 1. 

 In sum, Figures 1 and 2 suggest that there is considerable variation in the degree of price 

efficiency over time and across stocks. In the next section, we investigate to what extent there are 

common components in the time-varying efficiency of individual stocks. 

 

3. Estimating systematic variation in efficiency across individual stocks 

We now set out to examine whether there is systematic variation in market efficiency across 

individual stocks. To further enrich this analysis, we supplement the OIB predictability and 

autocorrelation measures of the previous section with a law of one price measure derived from 

the stock and options markets for individual stocks. The measure is based on implied volatility 

discrepancies between put and call option prices on a daily basis. The use of this measure 

deepens our understanding of commonality in efficiency by extending the notion to derivatives 

markets for individual stocks.  

 This put-call parity measure is estimated using the OptionMetrics database as the 

absolute difference between the implied volatilities of a call and a put option of the same series 

(i.e., pairs of options on the same underlying stock with the same strike price and the same 

expiration date), averaged across all option pairs for each stock. We use end-of-day quotes from 

all option series with positive implied volatilities, expiring in two weeks to one year, and with a 
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call delta between 0.3 and 0.7.
9
 We are able to estimate the put-call parity measure for 123 of the 

156 stocks in our sample, for on average 151 of the 180 months in our sample period. The 

average number of underlying (put and call) option series is nine, with a minimum of four and a 

maximum of 22. We discard stock-days with fewer than three valid underlying option series. The 

mean absolute put-call parity deviation (expressed in terms of implied volatility) across stock-

days in the sample is 1.2%. 

To estimate the extent of systematic variation in efficiency across stocks, we run time-

series regressions of changes in the efficiency of individual stocks on contemporaneous, lead, 

and lagged changes in market-wide efficiency (computed as the equally-weighted average 

efficiency across the stocks in our sample, excluding the stock of interest), see equation (2).
10

 We 

estimate these regressions by stock-month based on daily efficiency estimates for individual 

stocks within the month. We perform the commonality regressions for the OIB predictability 

measure, the autocorrelation measure, and the put-call parity measure.  

The results are in Table 3. For each of the three efficiency measures, the table reports 

average coefficients across all stock-month regressions, average t-statistics, cross-sectional t-

statistics, the fraction of coefficients across all stock-month regressions that is positive and that is 

positive and significant, and the average R
2
 as well as the average adjusted R

2
 across all stock-

month regressions.  

 Table 3 reveals evidence of significant systematic variation in efficiency across stocks. 

The average coefficient on contemporaneous changes in market-wide efficiency is positive and 

economically substantial for all efficiency measures, ranging from 0.389 for the OIB 

                                                 
9
 This measure is also used in Cremers and Weinbaum (2010). These authors note that while, strictly speaking, put-

call parity does not hold as an equality for the American call options on individual stocks, a discrepancy in implied 

volatilities from binomial models nonetheless is indicative of an inefficiency in the stock and options markets. 
10

 Since our sample consists of 156 stocks, it is unfortunately not feasible to investigate commonality at a finer level, 

e.g., at that of the industry. 
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predictability measure to 0.556 for the put-call parity measure. The average t-statistic of this 

coefficient is not significant in any of the cases, but the cross-sectional t-statistics (computed 

from the cross-sectional distribution of estimated coefficients by stock-month) range from 7.4 for 

the put-call parity measure to 30.2 for the autocorrelation measure, which is clear evidence of 

significant commonality in efficiency. We note that the cross-sectional t-statistics are calculated 

under the assumption that the estimation errors in the estimated coefficients are independent 

across the stock-month regressions, a presumption we examine in more detail below. The 

fraction of individual coefficients on contemporaneous changes in market-wide efficiency that is 

positive is 57% or more for all three efficiency measures; at least around 8% (OIB predictability) 

and up to 17% (put-call parity) of the coefficients are positive and significant on an individual 

basis. Although lead and lagged changes in market-wide efficiency have coefficients that are 

positive on average, there is little evidence that they are important in explaining time-variation in 

the efficiency of individual stocks. 

 The average (adjusted) R
2
s of the commonality regressions range from 19.3% (4.4%) for 

OIB predictability to 33.6% (26.0%) for put-call parity. Hence, although Table 3 shows evidence 

of significant common components in the efficiency of individual stocks, these components 

leave a substantial fraction of the time-variation in the efficiency of individual stocks 

unexplained. This suggests that there are also important idiosyncratic sources of time-variation in 

efficiency. Of course, there may also be non-negligible noise in our short-horizon efficiency 

estimates for individual stocks. Nonetheless, we note that the R
2
s in Table 3 for OIB 

predictability and autocorrelation are of the same order of magnitude as the R
2
s of similar 

regressions to estimate commonality in liquidity reported by Karolyi, Lee, and van Dijk (2012), 

who find that the monthly commonality in liquidity R
2
 in the U.S. averaged around 23% over the 



18 

 

period 1995-2009. In unreported robustness tests, we rerun the commonality regressions in 

equation (2) by stock-year (instead of stock-month) based on daily efficiency estimates within 

the year and obtain similar adjusted R
2
s for OIB predictability and autocorrelation as Chordia, 

Roll, and Subrahmanyam (2000) report for their yearly regressions to estimate commonality in 

liquidity. Commonality in microstructural measures of efficiency is thus roughly an equally 

strong phenomenon as commonality in liquidity. The adjusted R
2
 for the put-call parity 

regressions is much larger than the adjusted R
2
 for the two microstructural measures, indicating 

much greater commonality in put-call parity deviations than in intraday predictability of returns 

from order flow and past returns. 

 In Table 4, we explore the extent to which the cross-sectional t-statistics reported in 

Table 3 need to be corrected for the effect of cross-equation dependence in estimation error. 

Footnote 8 of Chordia, Roll, and Subrahmanyam (2000) reports that – under some simplifying 

assumptions – the ratio of the true standard error to the standard error used when assuming 

independence can be expressed as [1 + (N-1)×ρ]
½
, where ρ is the correlation between each pair of 

residuals. (This implies that for negative ρ, the standard errors used in Table 3 are too large and 

the reported t-statistics are too small.) Table 4 reports sample statistics of the correlations 

between residuals of the stock-month commonality regressions across stocks, estimated on an 

annual basis. The table reveals little evidence of cross-equation dependence. For each of the 

three short-horizon efficiency measures and for each year, the average correlation is very close to 

zero and the p-values are never significant.  

 Figure 3 shows the time variation in the degree of commonality in efficiency across 

stocks. The figure plots the equally-weighted average across stocks of the R
2
 of the monthly 

commonality regressions. Each line in the figure represents commonality in efficiency based on 
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one of the three short-horizon efficiency measures in Table 3 (OIB predictability, 

autocorrelation, and put-call parity). The figure shows considerable variation for each of the 

three commonality series. This suggests that the common components in the time-varying 

efficiency of individual stocks are stronger in some periods than in others. The time-series 

pattern is at least somewhat similar across the three measures. For example, each measure shows 

a peak in mid to late 2007, which could be related to the breakdown of arbitrage as a result of the 

“quant crisis” (Khandani and Lo, 2011), and towards the end of 2008, possibly related to the 

onset of the global financial crisis around the Lehman Brothers collapse. The correlation across 

the three monthly commonality in efficiency measures is positive at 0.28. 

 

4. Estimating systematic variation across aggregate efficiency measures 

The previous section looked for evidence on systematic variation in efficiency across individual 

stocks. In this section, we consider the hitherto unexplored issue of whether there is systematic 

variation across market-wide efficiency measures. In other words, we examine commonality 

across measures of market efficiency at the aggregate market level. The underpinning argument 

is that if the efficacy of arbitrage varies over time owing to variation in the availability of capital 

or funding constraints, both intraday and longer-horizon versions of efficiency will tend to vary 

systematically over time. The key innovation here is that we link high-frequency, microstructural 

measures of market quality to broader, longer-horizon market efficiency metrics. 

 

4.1 Common variation in short- and long-horizon measures of efficiency 

We extend the efficiency analyses of the previous section in two ways. First, we add a measure 

of efficiency used in Bessembinder (2003): namely, a variance ratio that examines how closely 
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the market adheres to a random walk benchmark. Second, we add two measures based on longer-

horizon return anomalies that are prominent in the asset pricing literature: namely, monthly 

reversals (Jegadeesh, 1990) and momentum (Jegadeesh and Titman, 1993). While there are a 

large number of cross-sectional anomalies (Fama and French, 2008; McLean and Pontiff, 2012), 

for parsimony, we focus on the two well known departures from weak-form efficiency in the 

cross-section; this accords with our usage of the short-horizon predictability of returns from past 

returns and order flow. 

Specifically, we consider the following measures: 

 Variance ratio: |1 - 13×VAR(30-min) / VAR(OC)|, where VAR(30-min) is the return 

variance estimated from 30-minutes, market-wide (equal-weighted) mid-quote returns 

within a day and VAR(OC) is the return variance estimated from open-to-close, market-

wide mid-quote returns. The scaling factor 13 is based on the number of 30-minute 

intervals within the 6.5 hour trading day. We discard stock-days with fewer than four 

non-zero 30-minute returns. The variance ratio is estimated each month and tends to unity 

as serial dependence in asset returns tends to zero as per Bessembinder (2003); therefore, 

it measures how closely the market adheres to a random walk.
11

  

 Reversal: returns on a portfolio that is long losers and short winners over the past month.  

 Momentum: returns on a portfolio that is long winners and short losers over the past 

twelve months, skipping the first month (i.e., months m-12 up to and including m-2, 

where m is the current month); 

                                                 
11

 Variance ratios are computed from equal-weighted mid-quote returns and do not utilize traded prices, mitigating 

the problem of non-synchronous trading. We use variance ratios at the aggregate market level, because our 

exploratory analyses and those of Andersen, Bollerslev, and Das (2001) suggest that return outliers at high 

frequencies render intraday variances unreliable at the individual stock level. Our use of 30-minute-to-daily variance 

ratios is similar to the hourly-daily measure computed by Bessembinder (2003) and Chordia, Roll, and 

Subrahmanyam (2011); and the use of hourly-daily variance ratios does not substantially alter our conclusions. 
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The monthly time-series of returns on the reversal and momentum factors are computed as the 

monthly average of the daily returns on those factors as obtained from Ken French’s website 

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/).
12

 We aggregate the 

three stock-specific efficiency measures (OIB predictability, autocorrelation, and put-call parity) 

to monthly, market-level measures by first averaging across stocks each day, and then averaging 

across days within the month. 

Table 5 presents the correlation matrix between the six different monthly market-wide 

efficiency measures. All six measures are inverse indicators of the degree of market efficiency. 

We present the Pearson and Spearman correlations in Panels A and B, respectively. Of the 15 

correlations in Panel A, 13 are positive, and seven are significant at the 10% level or less. In 

Panel B, 14 of 15 correlations are positive, with nine being significant at the 10% level or less. 

This is indication of non-trivial systematic variation in aggregate market efficiency across 

various efficiency measures. We note that the put-call parity and reversal measures (and to a 

lesser extent the variance ratio measure) are positively and significantly related to the 

microstructural efficiency measures (i.e., OIB predictability and autocorrelation); however, the 

correlations between momentum and these measures, while positive, are much smaller. In 

addition, the correlations of momentum with put-call parity and variance ratio are 

indistinguishable from zero (and positive in only one of four cases corresponding to the two 

methods of computing correlations). Momentum is, however, positively correlated with reversal, 

                                                 
12

 As per the website, the momentum factor is formed as follows: “We use six value-weight portfolios formed on 

size and prior (2-12) returns to construct Mom. The portfolios, which are formed daily, are the intersections of 2 

portfolios formed on size (market equity, ME) and 3 portfolios formed on prior (2-12) return. The daily size 

breakpoint is the median NYSE market equity. The daily prior (2-12) return breakpoints are the 30
th

 and 70
th

 NYSE 

percentiles. [The momentum factor] is the average return on the two high prior return portfolios minus the average 

return on the two low prior return portfolios.” The reversal factor is formed similarly, except that the prior month’s 

return replaces the prior 2-12 months’ return. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/
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and significantly so in Panel A. The correlation between the two microstructural measures is 

close to unity, and highly significant in both Panels A and B.  

Given the evidence of significant common variation in aggregate market efficiency 

across different measures in Table 5, we now seek to extract a systematic efficiency factor via 

principal component analysis (PCA). We follow Hasbrouck and Seppi (2000) and extract the 

principal components using the correlation matrix of Panel A in Table 5. We omit the 

autocorrelation-based microstructural measure from the PCA because, as observed above, it is a 

near-perfect substitute for the OIB-based measure. We find that the first principal component 

explains 32.9% of the total variation in the five monthly time-series of market-wide efficiency 

measures. Moreover, the loadings of the five different efficiency measures on the first principal 

component all have the same sign, with the greatest loadings for OIB predictability, put-call 

parity, and reversal. The second to fifth components account for 23%, 20%, 17%, and 8% of the 

variance, respectively. Overall, this evidence points at the existence of strong common factors in 

both microstructural and longer-horizon measures of market efficiency. 

Given that the first component explains almost a full one-third of the total variation, 

explains ten percent more variation than the next component, and exhibits same-sign factor 

loadings across all five efficiency measures, we use this component as representative of 

systematic variation in aggregate market efficiency. To get a time-series of the first principal 

component, we standardize each efficiency measure to have zero mean and unit standard 

deviation, and multiply the matrix of standardized efficiency measures by the vector of the 

loadings of each measure on the component. 
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4.2 Determinants of systematic variation in aggregate market efficiency 

We now turn to an analysis of the drivers of systematic variation in aggregate market efficiency, 

defined by the first principal component. First, we propose that the systematic component of 

aggregate efficiency can be related to variables that measure funding liquidity, such as hedge 

fund flows and short rates. To the extent that fluctuations in the funding liquidity of the financial 

system have pervasive effects on arbitrage activity (e.g., Akbas, Armstrong, Sorescu, and 

Subrahmanyam, 2010), the systematic component of efficiency can be affected by changes in 

funding liquidity. Second, arbitrage activity is hampered more generally by frictions such as 

idiosyncratic volatility and bid-ask spreads. Variation in these frictions can result in systematic 

variation in efficiency. Third, common variation in efficiency can be induced by microstructural 

aspects that affect market making efficacy (such as market-wide trading activity) and/or by 

irrational investor behavior. 

We collect data on three different proxies for funding liquidity. Hedge fund flow is the 

monthly percentage in money inflow into hedge funds.
14

 Greater hedge fund inflows should spur 

arbitrage activity. We note that hedge fund flow data are available for only part of the sample 

period. TED spread is the difference between the three-month LIBOR and the three-month T-bill 

rate from the FRED database of the Federal Reserve Bank of St. Louis and is a widely used 

indicator of funding liquidity (Brunnermeier, Nagel, and Pedersen, 2008; Brunnermeier, 2009; 

Brennan, Chordia, Subrahmanyam, and Tong, 2012).
15

 Bank returns is the monthly total return 

on the Dow Jones U.S. financial industry index taken from TRTH. Following Hameed, Kang, 

and Viswanathan (2010) and Karolyi, Lee, and van Dijk (2012), we argue that a rise in the 

                                                 
14

 We thank Matti Suominen and LIPPER-TASS for data on hedge fund flows. The sample includes all hedge funds 

that report their returns in U.S. dollars and have a minimum of 36 monthly return observations over our sample 

period. The sample period spans 1996 to 2008. 
15

 The notion is that the TED spread may proxy for counterparty risk, which, when elevated, can lead to funding 

illiquidity.  



24 

 

market value of the financial industry is likely to be associated with a stronger aggregate balance 

sheet of the funding sector. 

 We include two proxies for market frictions that can hamper arbitrage. 5-minute volatility 

is the average across stocks of the monthly return volatility estimated by stock based on 5-minute 

intervals within the month. Prior research (e.g., de Jong, Rosenthal, and van Dijk, 2009) suggests 

that idiosyncratic volatility impedes arbitrage. PESPR is the average across stocks of the monthly 

time-series average of the daily proportional effective bid-ask spread of each stock, computed 

from TRTH data. 

 Regarding the third category of determinants (sources of mispricing), we argue that 

fundamental uncertainty can make deviations from efficient pricing more likely across the board 

and we use the forward-looking VIX volatility index obtained from TRTH as a proxy for market-

wide uncertainty. #trades is the total number of trades per month across all the stocks in our 

sample. We include this variable to account for the marked increase in turnover and decrease in 

average trade size over our sample period which has been related to the advent of algorithmic 

trading (Hendershott, Jones, and Menkveld, 2011; Chordia, Roll, and Subrahmanyam, 2011). 

Finally, Baker and Wurgler (2006) show that waves of investor sentiment affect many stocks at 

the same time. To test the hypothesis that fluctuations in market-wide investor sentiment affect 

systematic variation in efficiency, we include their U.S. investor sentiment index (sentiment). 

 Table 6 presents summary statistics of the five (non-standardized) efficiency measures 

(Panel A) and of the variables in each of the three categories of potential determinants of the 

systematic component of aggregate efficiency (Panel B). The mean R
2
 of the OIB predictability 

regressions is around 2% (like in Table 2) and the mean absolute put-call parity deviation is 

about 1.2%. The mean absolute deviation of the variance ratio from unity is 0.24, which is 
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broadly in line with the findings of Chordia, Roll, and Subrahmanyam (2011). The mean daily 

rewards for reversal and momentum are 8.6 and 2.6 basis points, respectively.  

 We are interested in what factors explain time-variation in the systematic component of 

efficiency. We run simple time-series regressions of the first principal component on the 

contemporaneous determinants in the three categories. Prior to usage as a dependent variable, we 

detrend the efficiency measure with linear and quadratic trend terms.
16

 Table 7 presents the 

estimated coefficients and their associated t-statistics in each of these six regressions. The results 

indicate that the systematic component of efficiency depends on all three categories of 

determinants. The regression reported in the first column includes only the funding liquidity 

measures. We find that the coefficient of hedge fund flow is negative and significant at the 1% 

level, whereas the coefficients on TED spread and bank returns are positive and negative, 

respectively, and significant at the 10% and 1% levels. Thus, an increase in hedge fund inflows 

and returns to the banking sector or a decrease in the TED spread all improve the systematic 

component of market efficiency, which is consistent with intuition. The economic magnitudes of 

these effects are considerable. A one standard deviation increase in hedge fund flow is associated 

with a 0.27 standard deviation decrease in the systematic component of efficiency (which is an 

inverse measure of aggregate market efficiency).
17

 The corresponding economic effects of TED 

spread and bank returns are equal to 0.24 and 0.26, respectively. 

The regression reported in the second column of Table 7 includes the microstructural 

frictions variables. The coefficient on 5-minute volatility is strongly positive; a one standard 

                                                 
16

 Detrending addresses the possible concern that trends in dependent and explanatory variables could lead to 

spurious conclusions, and follows Roll, Schwartz, and Subrahmanyam (2007). The results below are largely 

unchanged whether we detrend the principal component, or whether we detrend the individual efficiency measures 

and then extract the principal component. 
17

 This economic magnitude is computed by multiplying the coefficient on hedge fund flow of -0.103 in the first 

column of Table 7 by the time-series standard deviation of this variable of 1.533 (from Table 6) and then dividing by 

the time-series standard deviation of the detrended first principal component of the five aggregate market efficiency 

measures, which is equal to 0.584 (not tabulated). 
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deviation decrease in 5-minute volatility is associated with a 0.77 standard deviation 

improvement in systematic market efficiency. Idiosyncratic volatility can deter arbitrage in 

individual stocks, and our result suggests that a reduction in the average total volatility across 

stocks is associated with increased efficiency. The coefficient on PESPR is not significant, 

somewhat surprisingly. We revisit this issue below. 

We present coefficients for the last category of determinants (sources of mispricing) in 

the third column of Table 7. The coefficient on VIX is positive and significant, indicating that 

increased ex ante uncertainty leads to decreased efficiency, as is intuitive. A one standard 

deviation reduction in VIX is associated with a 0.70 standard deviation improvement in market 

efficiency. However, #trades or sentiment are not related to common variation in efficiency in 

this specification.  

To isolate the role of the bid-ask spread, in the fourth column we include PESPR as the 

sole variable in the regression. We find that the coefficient on this variable is positive and 

significant at the 10% level, which is in line with the view that illiquidity hampers arbitrage and 

thus harms efficiency. Combining the evidence in the second and fourth columns, this suggests 

that short-horizon volatility supplants liquidity as a determinant of systematic variation in market 

efficiency. 

The fifth column of Table 7 includes all of the determinants of efficiency. The 

coefficients on the funding liquidity measures continue to have the expected sign and preserve 

their statistical and economic significance, as does the coefficient on 5-minute volatility. In the 

presence of this variable, however, the coefficient on VIX loses significance. Further, the 

coefficient on #trades is negative and significant in the presence of the other variables. The 

negative sign implies that, controlling for other determinants of efficiency, an increase in the 
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number of trades implies greater market efficiency, which is consistent with the notion that 

increased market activity leads to greater camouflage for arbitrageurs and increases their 

efficacy. Further, an increase in the number of trades could also be associated with increased 

algorithmic trading in later years of our sample (Hendershott, Jones, and Menkveld, 2011), and 

under the presumption that some of this trading is arbitrage-driven, it would enhance market 

efficiency. The economic significance of the effect of #trades is substantial. A one standard 

deviation increase in this variable is associated with a 0.35 standard deviation improvement in 

market efficiency.  

 We note that the coefficient on the proportional effective spread is negative and 

significant in the fifth column and thus switches sign relative to the fourth column. To ascertain 

whether the sign flip is due to the collinearity of PESPR with #trades (we expect these variables 

to be intimately related), we use the #trades measure orthogonalized with respect to PESPR as a 

separate variable in the sixth and last column of Table 7 (#trades  PESPR). We find that the 

coefficient on this orthogonalized measure remains negative and significant while the coefficient 

on the spread is no longer significant, as in the second column. Thus, the negative sign of the 

PESPR coefficient appears to arise from its interaction with #trades, and while the spread has a 

positive and marginally significant effect as a standalone determinant of common variation in 

efficiency, it is supplanted by the other variables in the regression.  

Taken together, the results in Table 7 indicate that the systematic component of aggregate 

market efficiency varies over time with aggregate funding liquidity, frictions that impede 

arbitrage, and microstructural aspects that affect market making efficacy. As indicated by the 

raw and adjusted R
2
s reported in Table 7, the determinants in these three categories jointly 

explain about two-thirds of the time-variation in the systematic component of market efficiency. 
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5. Conclusions 

We examine variation over time and across stocks in various short-horizon market efficiency 

metrics (specifically, intraday return predictability from order flow or returns and daily put-call 

parity deviations) for a substantial sample of NYSE stocks over a period of fifteen years. We 

show that each of the efficiency metrics demonstrates considerable time-variation and also 

exhibits a strong systematic component across stocks. We correlate the market-wide equivalents 

of these short-horizon efficiency metrics with market-wide variance ratios and with the well-

known reversal and momentum anomalies, and find that almost all of these short- and long-

horizon market efficiency measures are positively cross-correlated, with the majority of 

correlations being statistically significant. This finding links microstructural measures of market 

quality to measures of the law of one price, and to broader, longer-horizon measures of market 

efficiency. We then consider the pervasive component of efficiency via the first principal 

component across all our aggregate market efficiency metrics. We show that time-variation in 

the common efficiency component depends on funding liquidity, frictions that impede arbitrage, 

and traditional variables that measure the efficacy of market making such as trading activity.  

 Recognizing that market efficiency has a common component opens new vistas for 

research. First, it would be worth exploring whether there is a global component to variation in 

market efficiency. This would allow us to ascertain whether global financial crises might lead to 

systematic deterioration in the quality of price formation in markets across the world. Second, it 

would be worth investigating whether commonality in market efficiency extends to other asset 

classes such as fixed income securities, foreign exchange, and derivatives. Third, we have not 

attempted to explore asset pricing implications of our results given the relatively short sample 
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period of fifteen years. Nevertheless, it seems reasonable to conjecture that if agents prefer 

efficient markets and dislike unexpected deteriorations in market efficiency (due to, for example, 

unexpected shocks in arbitrage funding constraints), then both the level and the volatility of 

efficiency may be priced in the cross-section of asset returns. These and other issues are left for 

future research. 
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 Table 1: Cross-sectional summary statistics of time-series averages, 1996-2010 
 

This table reports the cross-sectional (across the 156 S&P100 stocks in the sample) mean, standard deviation, 

as well as the 25
th

, 50
th

 (median), and 75
th
 percentile of the time-series average by stock of the daily number of 

trades (#trades), trading volume in US$b. (dollar volume), one-minute mid-quote returns in basis points (1-min 
mid-quote return), percentage annualized volatility of one-minute mid-quote returns (1-min return volatility), 

percentage annualized volatility of 15-minute mid-quote returns (15-min return volatility), difference between 

the total amount of trades initiated by buyers and sellers over one-minute intervals (1-min OIB#), difference 

between the total dollar amount of trades initiated by buyers and sellers over one-minute intervals (1-min 

OIB$), proportional effective spread (PESPR), the number of days with fewer than 20 one-minute intervals 

during the day with a valid return observation for that interval and a valid OIB observation in the previous 

interval (filters), as well as the number of days (# days in sample) and the number of months (# months in 

sample) the stock is in the sample. The first column of the table indicates the number of stocks over which the 

summary statistics are computed. The sample includes all 156 NYSE-listed stocks that were part of the 

S&P100 at any time during 1996-2010. Data to compute all variables in the table are from TRTH. 

 

 # stocks mean st.dev. 25
th
  median 75

th
  

#trades 156 2,958 1,918 1,527 2,880 4,014 

dollar volume 156 0.097 0.081 0.039 0.073 0.130 

1-min mid-quote return 156 0.01 0.04 0 0.01 0.03 

1-min return volatility 156 28.70 7.64 23.78 26.57 32.18 

15-min return volatility 156 26.62 6.36 22.05 25.41 29.61 

1-min OIB# 156 0.185 0.149 0.089 0.170 0.251 

1-min OIB$ 156 18,840 15,701 8,428 14,995 26,708 

PESPR (%) 156 0.13 0.12 0.08 0.09 0.14 

filters 156 61 179 0 3 45 

# days in sample 156 2,972 1,012 2,585 3,563 3,667 

# months in sample 156 144 50 119 170 179 
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Table 2: Predictive regressions of one-minute returns on lagged order imbalance or on 

lagged returns, 1996-2010 
 

This table reports the average of the efficiency regression results from equation (1) estimated by stock-day for 

all 156 S&P100 stocks in the sample. Each of the first four columns in the table presents the results of a 

different way to estimate the efficiency regression. For OIB predictability, the dependent variable return is 

computed as the return of the mid-quote associated with the last trade to the mid-quote of the first trade in each 

one-minute interval and the independent variable OIB is the difference between the total dollar amount of 

trades initiated by buyers and sellers in the previous one-minute interval. The other methods are named after 

the single feature that distinguishes them from the OIB predictability regressions. The allquotes regressions are 

based on returns computed using any quotes within each interval rather than only using quotes associated with 

trades; the 2minutes regressions are based on two-minute instead of one-minute intervals; and the oib# 

regressions are based on order imbalance expressed in number of trades rather than dollars. The final column 

(autocorrelation) presents the results of similar regressions estimated by stock-day in which the independent 

variable is returnt−1 instead of OIBt−1. The first number in each column is the average slope coefficient in the 

efficiency regressions. The average (“t-stat avg”) and cross-sectional t-statistics (“t-stat cross”) are in 

parentheses below the coefficients. “% positive” is the percentage of positive coefficients, and “% positive 

significant” is the percentage of coefficients with t-statistics greater than 1.645 (the 5% critical level in a one-

tailed test). Intercepts have been suppressed to conserve space. For readability, the OIB coefficient has been 

scaled by 10
9
 for the OIB predictability, allquotes, and 2minutes regressions and by 10

4
 for the oib# 

regressions. The sample includes all 156 NYSE-listed stocks that were part of the S&P100 at any time during 

1996-2010. Data to compute returns and order imbalances are from TRTH. 

 

Dependent variable: returnt 

Efficiency measure: OIB predictability allquotes 2minutes oib# autocorrelation 

OIBt−1 0.997 0.511 0.849 0.664  

returnt−1     0.025 

 t-stat avg (1.510) (0.821) (0.850) (2.189) (0.412) 

 t-stat cross (48.375) (26.852) (37.848) (423.985) (151.250) 

 % positive 83.25 72.57 72.32 88.88 58.80 

 % positive significant 53.11 34.52 36.12 67.36 30.89 

R
2 

2.24 1.19 2.02 3.37 1.37 

adj. R
2
 1.68 0.62 1.29 2.81 0.70 

# regressions 463,469 463,476 466,634 463,191 451,958 
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Table 3: Monthly regressions of daily individual stock efficiency on contemporaneous, 

lagged, and lead market-wide efficiency, 1996-2010 
 

This table reports the average of the monthly commonality regression results from equation (2) estimated for 

all 156 S&P100 stocks in the sample. The dependent variable ΔEffi,d is the change in the efficiency of stock i 

on day d. The independent variable ΔMktEffd is the change in market-wide efficiency on day d, computed as 

the equally-weighted average efficiency of all individual stocks on day d, excluding stock i. Each commonality 

regression also includes a one-day lead and lag of changes in market-wide efficiency. Each of the three 

columns in the table presents the results of the commonality regressions based on a different efficiency 

measure. The OIB predictability efficiency measure is equal to the R
2
 of the daily regressions of the mid-quote 

return in each one-minute interval on order imbalance expressed in dollars in the previous one-minute interval 

(from Table 2). The autocorrelation measure is the R
2
 of the daily regressions of the mid-quote return in each 

one-minute interval on the mid-quote return in the previous one-minute interval (from Table 2). The put-call 

parity measure is the absolute difference between the implied volatilities of a call and a put option of the same 

series (i.e., pairs of options on the same underlying stock with the same strike price and the same expiration 

date), averaged across all option pairs for each stock (based on end-of-day quotes from all option series with 

positive implied volatilities, expiring in two weeks to one year, and with a call delta between 0.3 and 0.7). 

Each column presents the average slope coefficients in the commonality regressions. The average (“t-stat avg”) 

and cross-sectional t-statistics (“t-stat cross”) are in parentheses below the coefficients. “% positive” is the 

percentage of positive coefficients, and “% positive significant” is the percentage of coefficients with t-

statistics greater than 1.645 (the 5% critical level in a one-tailed test). Intercepts have been suppressed to 

conserve space. The sample includes all 156 NYSE-listed stocks that were part of the S&P100 at any time 

during 1996-2010. Data to compute the efficiency measures are from TRTH and OptionMetrics. 

 

Dependent variable: ΔEffi,d 

Efficiency measure: OIB predictability autocorrelation put-call parity 

ΔMktEffd 0.389 0.509 0.556 

 t-stat avg (0.219) (0.329) (0.543) 

 t-stat cross (20.657) (30.215) (7.429) 

 % positive 57.45 60.42 64.05 

 % positive significant 7.94 10.37 17.33 

ΔMktEffd-1 0.025 0.019 0.067 

 t-stat avg (0.017) (0.025) (0.044) 

 t-stat cross (1.359) (1.148) (1.555) 

 % positive 49.92 49.61 49.94 

 % positive significant 7.04 7.29 8.59 

ΔMktEffd+1 0.025 0.019 0.141 

 t-stat avg (0.024) (0.017) (0.024) 

 t-stat cross (1.303) (1.159) (1.995) 

 % positive 50.54 49.76 49.58 

 % positive significant 7.30 7.16 8.06 

R
2 

19.32 19.95 33.64 

adj. R
2
 4.38 5.09 25.96 

# regressions 22,430 21,660 18,681 
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Table 4: Check for cross-equation dependence in estimation error, 1996-2010 
 

This table assesses to what extent the reported cross-sectional t-statistics in Table 3 need to be corrected for 

cross-equation dependence in residuals. Estimating equation (2) monthly for each individual stock yields daily 

residuals for each stock for each month. The table reports the average pairwise correlation between these 

residuals for every stock for each year in the sample for each of the three stock-level efficiency measures in 

Table 3 (OIB predictability, autocorrelation, and put-call parity) as well as the associated average p-values in 

parentheses. The sample includes all 156 NYSE-listed stocks that were part of the S&P100 at any time during 

1996-2010. Data to compute the efficiency measures are from TRTH. 

 

Efficiency measure: OIB predictability autocorrelation put-call parity 

1996 -0.001 -0.001 0.003 

  (0.430) (0.456) (0.428) 

1997 -0.001 -0.004 0.002 

  (0.412) (0.427) (0.432) 

1998 0.000 -0.003 -0.002 

  (0.413) (0.414) (0.418) 

1999 0.001 -0.002 -0.001 

  (0.412) (0.415) (0.435) 

2000 0.000 -0.002 -0.002 

  (0.411) (0.420) (0.402) 

2001 -0.001 -0.003 -0.003 

  (0.405) (0.416) (0.414) 

2002 -0.003 -0.006 0.001 

  (0.416) (0.408) (0.404) 

2003 -0.003 -0.002 -0.001 

  (0.409) (0.412) (0.409) 

2004 -0.002 -0.002 0.000 

  (0.423) (0.415) (0.409) 

2005 -0.002 -0.003 -0.004 

  (0.412) (0.417) (0.409) 

2006 -0.002 -0.002 -0.002 

  (0.411) (0.411) (0.414) 

2007 -0.002 -0.002 -0.005 

  (0.396) (0.409) (0.330) 

2008 -0.001 -0.003 0.001 

  (0.405) (0.393) (0.231) 

2009 -0.002 -0.004 0.014 

  (0.417) (0.397) (0.351) 

2010 -0.003 -0.005 0.002 

  (0.416) (0.401) (0.354) 
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Table 5: Correlations between aggregate market efficiency measures, 1996-2010 
 

This table reports correlation coefficients between six different monthly aggregate market efficiency measures. 

Three of the efficiency measures (OIB predictability, autocorrelation, and put-call parity) are aggregated from 

daily stock-level efficiency measures by first averaging across stocks each day, and then averaging across days 

within the month. Variance ratio is the monthly absolute difference between one and the scaled ratio of the 30-

minute mid-quote return variance to the open-to-close mid-quote return variance. Reversal and momentum are 

the average daily returns each month on portfolios that are long losers and short winners over the past month 

and long winners and short losers over the past twelve months skipping the first month, respectively. All six 

measures are inverse indicators of the degree of market efficiency. Panels A and B present Pearson and 

Spearman correlations, respectively. The sample includes all 156 NYSE-listed stocks that were part of the 

S&P100 at any time during 1996-2010. Data to compute the efficiency measures are from TRTH, 

OptionMetrics, and the website of Ken French. p-values are in parentheses. Significance at the 1%, 5%, and 

10% level is indicated by ***, **, and *, respectively. 

 

 OIB 
predictability 

auto- 
correlation 

put-call    
parity 

variance   
ratio 

reversal momentum 

Panel A: Pearson correlations 

OIB predictability 1      

       

autocorrelation 0.915***  1     

 (0.00)      

put-call parity 0.591***  0.454***  1    

 (0.00) (0.00)     

variance ratio 0.112 0.145* 0.035 1   

 (0.14) (0.05) (0.64)     

reversal 0.124* 0.125* 0.068 0.002 1  

 (0.10) (0.09) (0.36) (0.98)   

momentum 0.087 0.104 -0.05 -0.015 0.154** 1 

 (0.24) (0.17) (0.51) (0.84) (0.04)  

Panel B: Spearman correlations 

OIB predictability 1      

       

autocorrelation 0.933*** 1     

 (0.00)      

put-call parity 0.566*** 0.490*** 1    

 (0.00) (0.00)     

variance ratio 0.097 0.139* 0.125* 1   

 (0.20) (0.06) (0.09)     

reversal 0.226*** 0.236*** 0.220*** 0.133* 1  

 (0.00) (0.00) (0.00) (0.08)   

momentum 0.091 0.063 0.017 -0.061 0.016 1 

 (0.22) (0.40) (0.82) (0.42) (0.83)  
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Table 6: Summary statistics of aggregate market efficiency and its potential determinants, 

1996-2010 
 

This table reports the time-series mean, standard deviation, as well as the 25th, 50th (median), and 75th 

percentile of the five monthly aggregate market efficiency measures included in the principal component 

analysis (Panel A) and three categories of potential determinants of time-series variation in aggregate market 

efficiency (Panel B). Three of the efficiency measures (OIB predictability, autocorrelation, and put-call 

parity) are aggregated from daily stock-level efficiency measures by first averaging across stocks each day, 

and then averaging across days within the month. Variance ratio is the monthly absolute difference between 

one and the scaled ratio of the 30-minute mid-quote return variance to the open-to-close mid-quote return 

variances. Reversal and momentum are the average daily returns each month on portfolios that are long losers 

and short winners over the past month and long winners and short losers over the past twelve months skipping 

the first month, respectively. All five measures are inverse indicators of the degree of market efficiency. Panel 

B distinguishes between three categories of potential determinants. (i) Funding liquidity: percentage money 

inflows into hedge funds (hedge fund flow), TED spread (FRED ID: USD3MTD156N minus TB3MS), and 

monthly returns on the Dow Jones U.S. financial industry index (bank returns; RIC: .DJUSFN). (ii) Frictions 

impeding arbitrage: aggregate (i.e., equally-weighted cross-sectional average) volatility based on five-minute 

intervals (averaged over all observations within the month) (5-min volatility) and aggregate proportional 

effective spread (averaged over daily observations within the month) (PESPR). (iii) Sources of mispricing: 

VIX index (VIX), aggregate number of trades in millions (#trades), and the sentiment index from Baker and 

Wurgler (2006) (sentiment). 

 

 # obs. mean st.dev. 25
th
  median 75

th
  

Panel A: Measures of aggregate market efficiency 

OIB predictability (% R
2
) 180 2.27 1.84 0.80 1.13 3.43 

put-call parity (%) 180 0.24 0.23 0.10 0.19 0.33 

variance ratio 180 1.17 0.54 0.71 1.01 1.59 

reversal (bp per day) 180 2.56 28.58 -7.38 3.25 16.66 

momentum (bp per day) 180 8.58 24.74 -2.97 5.82 16.95 

Panel B: Determinants of aggregate market efficiency 

(i) Funding liquidity 

hedge fund low (%) 168 0.781 1.533 0.113 1.006 1.671 

TED spread (%) 180 0.574 0.440 0.242 0.482 0.722 

bank returns (%) 179 0.265 5.797 -1.831 1.010 3.415 

(ii) Frictions impeding arbitrage 

5-min volatility (% per annum) 180 19.32 7.58 13.78 17.37 22.17 

PESPR (%) 180 0.112 0.075 0.044 0.094 0.170 

(iii) Sources of mispricing (fundamental uncertainty, trading, sentiment) 

VIX 180 22.22 8.38 16.61 20.98 25.48 

#trades (millions) 180 8.570 7.746 2.251 6.208 12.747 

sentiment 180 0.212 0.608 -0.140 0.098 0.435 
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Table 7: Regressions to explain systematic variation in aggregate market efficiency,  

1996-2010 
 

This table presents the results of time-series regressions to explain systematic variation in aggregate market 

efficiency, defined as the first principal component of the five monthly aggregate market efficiency measures 

from Table 6. To get a time-series of the first principal component, we standardize each efficiency measure to 

have zero mean and unit standard deviation, and multiply the matrix of standardized efficiency measures by 

the vector of the loadings of each measure on the component. We then detrend the first principal component 

with linear and quadratic trend terms. The resulting dependent variable in the regressions is an inverse 

indicator of the degree of market efficiency. The (contemporaneous) independent variables are described in 

Table 6 and are grouped into three categories: (i) funding liquidity, (ii) frictions impeding arbitrage, and (iii) 

sources of mispricing (#trades  PESPR is the #trades variable orthogonalized with respect to the PESPR 

variable). The sample includes all 156 NYSE-listed stocks that were part of the S&P100 at any time during 

1996-2010. Intercepts have been suppressed to conserve space; t-statistics are in parentheses. Significance at 

the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively. 

 

Dependent variable: detrended first principal component of five monthly aggregate market efficiency measures 

 (1) (2) (3) (4) (5) (6) 

(i) Funding liquidity 

hedge fund flow -0.103***    -0.051** -0.051** 

 (-3.16)    (-2.32) (-2.32) 

TED spread 0.324*    0.336*** 0.336*** 

 (1.70)    (3.15) (3.15) 

bank returns -0.026***    -0.012* -0.012* 

 (-3.63)    (-1.79) (-1.79) 

(ii) Frictions impeding arbitrage 

5-min volatility  0.059***   0.046*** 0.046*** 

  (8.04)   (3.81) (3.81) 

PESPR  0.253  2.071* -1.324* 0.408 

  (0.48)  (1.79) (-1.97) (0.80) 

(iii) Sources of mispricing (fundamental uncertainty, trading, sentiment) 

VIX   0.049***  -0.003 -0.003 

   (7.01)  (-0.36) (-0.36) 

#trades   0.002  -0.026***  

   (0.20)  (-3.73)  

#trades   PESPR      -0.026*** 

      (-3.73) 

sentiment   0.106  0.068 0.068 

   (1.38)  (1.55) (1.55) 

R
2
 40.64 59.61 51.20 7.16 66.03 66.03 

adj. R
2
 39.46 59.15 50.37 6.64 64.17 64.17 

# obs. 155 180 180 180 155 155 
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Figure 1: Time-variation in microstructural market efficiency measures,  

1996-2010 
 

This figure shows the monthly time-variation in five aggregate market efficiency measures estimated from 

microstructure data. Each of the five microstructural efficiency measures is estimated at the individual stock-

level as the R
2
 of daily regressions predicting short-interval mid-quote returns from order flow or returns, and 

is then aggregated to a monthly, aggregate market efficiency measure by first averaging across stocks each 

day, and then averaging across days within the month. A high R
2
 indicates low efficiency. For OIB 

predictability, the dependent variable is computed as the return of the mid-quote associated with the last trade 

to the mid-quote of the first trade in each one-minute interval and the independent variable OIB is the 

difference between the total dollar amount of trades initiated by buyers and sellers in the previous one-minute 

interval. The allquotes regressions are based on returns computed using any quotes within each interval rather 

than only using quotes associated with trades; the 2minutes regressions are based on two-minute instead of 

one-minute intervals; and the oib# regressions are based on order imbalance expressed in number of trades 

rather than dollars. The autocorrelation measure is based on similar regressions estimated by stock-day in 

which the independent variable is the return (instead of the OIB) in the previous one-minute interval. The 

sample includes all 156 NYSE-listed stocks that were part of the S&P100 at any time during 1996-2010. Data 

to compute the efficiency measures are from TRTH. 
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Figure 2: Cross-sectional variation in microstructural efficiency across stocks,  

yearly boxplots, 1996-2010 
 

This figure shows yearly boxplots of the OIB predictability efficiency measure, defined as the average R
2
 for 

all 156 S&P100 stocks in the sample based on daily regressions of mid-quote returns on lagged order 

imbalance measured over one-minute intervals within the day, averaged by stock across days within the year. 

A high R
2
 indicates low efficiency. The bottom, middle, and top line of the boxes reflect the 25th, 50th 

(median), and 75th percentile of the yearly average R
2
s across the 156 stocks in our sample, respectively. The 

top (bottom) of the line above (below) the boxes represents the highest (lowest) individual stock R
2
 below 

(above) the 75th (25th) percentile plus (minus) 1.5 times the interquartile range, called the end of the whiskers. 

Observations above the end of the top whisker and below the end of the bottom whisker are not shown. The 

sample includes all 156 NYSE-listed stocks that were part of the S&P100 at any time during 1996-2010. Data 

to compute the efficiency measures are from TRTH. 
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Figure 3: Time-variation in commonality in efficiency, 1996-2010 
 

This figure shows the monthly time-variation in the degree of commonality in efficiency across stocks for 

three short-horizon efficiency measures. The OIB predictability efficiency measure is equal to the R
2
 of the 

daily regressions of the mid-quote return in each one-minute interval on order imbalance expressed in dollars 

in the previous one-minute interval (from Table 2). The autocorrelation measure is the R
2
 of the daily 

regressions of the mid-quote return in each one-minute interval on the mid-quote return in the previous one-

minute interval (from Table 2). The put-call parity measure is the absolute difference between the implied 

volatilities of a call and a put option of the same series (i.e., pairs of options on the same underlying stock with 

the same strike price and the same expiration date), averaged across all option pairs for each stock (based on 

end-of-day quotes from all option series with positive implied volatilities, expiring in two weeks to one year, 

and with a call delta between 0.3 and 0.7). All three measures are inverse indicators of the degree of efficiency. 

For each efficiency measure, a monthly measure of commonality in efficiency across stocks is computed as the 

average R
2
 across all stocks in the sample of monthly regressions of daily changes in individual stock 

efficiency on contemporaneous, lead, and lagged changes in market-wide efficiency. The sample includes all 

156 NYSE-listed stocks that were part of the S&P100 at any time during 1996-2010. Data to compute the 

efficiency measures are from TRTH. 

 

 


