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Abstract

We study financial contracting in a model encompassing costly state verification, risk aver-
sion and imperfect investor protection. We characterize optimal contracts with special emphasis
on repayment functions that are continuous on the firm’s returns and provide a well specified
condition for such contracts to take the form of standard debt. Moreover, we show that for some
popular specifications of preferences, standard debt can be optimal only if investor protection is
imperfect. Our comparative statics exercises demonstrate that, as long as the contract is contin-
uous, the cost of funds and the probability of bankruptcy are decreasing in the level of investor
protection, a result that can be extended to a dynamic setting. In a specific parametrization of the
problem, we show that moderate changes in the level of investor protection can have substantial
quantitative effects on the terms of the optimal contract and on the borrower’s welfare. Finally,
we study the relationship between investor protection and leverage and consider the consequences
of implementing standard debt contracts when optimality conditions are not satisfied.
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1 Introduction

Scholars and policymakers seem to agree on the fact that good investor protection,
broadly defined, bolsters financial development and economic growth. At the same time,
considerable evidence tells us that rarely are investors well protected in financial contracts.
The most widely used measure of investor protection -a creditor rights index that ranges
from 0 ("weak") to 4 ("strong") introduced by La Porta et al. (1997)- suggests that protection
to financiers is low on average, 1.8 in a sample of developed and developing countries, and
varies widely across countries. Using an updated version of this index, panel (a) of Figure 1
shows that only 9 out of the 133 countries in the sample can be said to have "strong creditor
rights", while 21 exhibit "weak creditor rights".1

Along with investor protection issues, recent research (e.g. Panousi and Papanikolaou
(2012), Lewellen (2006)) has revisited the old working assumption of risk-neutral entrepre-
neurs and the consequences of risk-averse behavior for firm investment and financing deci-
sions. For instance, if ownership is disperse or shareholders have well diversified portfolios,
and if the manager’s compensation scheme is independent of the firm’s returns, the issues
of firm finance and manager’s insurance can be studied separately (i.e. we can model the
firm as a relatively risk-neutral agent). While these may be plausible features of large firms,
small and medium businesses are characterized precisely by the opposite: managers are
typically owners and have limited access to hedging instruments. This inverse relationship
between firm size and risk attitudes is formalized in the entrepreneurial decreasing absolute
risk aversion (DARA) hypothesis of Cressy (2000) and supported by the empirical evidence
collected by Fang and Nofsinger (2009) and Schmid et al. (2008). Panel (b) of Figure 1 uses
some data from the former study to illustrate the DARA evidence.

In this paper we explore the roles of risk aversion and imperfect investor protection in
jointly determining the terms of optimal financial contracts when there is asymmetric infor-
mation. The starting point of our analysis is the celebrated costly state verification (CSV)
model of Townsend (1979) in which an entrepreneur and an investor design a financial con-
tract to fund a joint project with returns that are costlessly observed only by the entrepreneur.

This basic CSV model -which has been extended in several dimensions and is now the
workhorse of dynamic macroeconomic models with financial frictions2-, is hereby extended
to explicitly study the role of investor protection. In particular, we follow Krasa et al. (2008)
and account for investor protection not only through verification costs, but also as the max-
imum fraction of the borrower’s income that the investor can recover.3

1A good survey on the finance-growth subject is Levine (2005). The creditors right problem is particularly
acute in developing countries such as those in Latin American as Galindo and Micco (2004) point out.

2A partial list of extensions is: economies with production (Gale and Hellwig (1985)), multiple types of
borrowers (Williamson (1987)), multiple investors (Winton (1995)), deviations from absolute priority (Bebchuk
(2002)), limited commitment (Krasa and Villamil (2000)), and imperfect monitoring (Greenwood et al. (2010)).
The use of the CSV model in macroeconomics was launched by Bernanke and Gertler (1989); for other macro-
economic applications see Carlstrom and Fuerst (1997) and Christiano et al. (2010).

3This is in contrats with Sevcik (2012) where investor protection is associated only with monitoring costs,
and closer in spirit to investor protection in Castro et al. (2004) where borrowers can appropriate returns.
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Figure 1: Investor protection and entrepreneurial risk aversion
(a) Creditor rights in 133 countries (b) Risky assets as % of net worth

Source: La Porta et al (1996, 1997) Source: Fang and Nofsinger (2009)

The motivation for introducing this additional source of imperfect investor protection
comes from the legal codes and the extant evidence on bankruptcy settlements. Indeed,
many countries have introduced various types of legislation aimed at limiting the fraction of
income and property that creditors can extract from borrowers in the case of bankruptcy. For
instance, in the U.S., Chapter 7 procedures specify that exempt assets (such as home equity
and retirement accounts in some states) cannot be used to satisfy creditor claims. Likewise,
in some Eastern European and Latin American countries, bankruptcy law requires (or used
to require) that certain constituencies be repaid in full before any secured creditor, de facto
reducing the fraction of assets that could be used to recover debts.4

In contrast to the model in Krasa et al. (2008), however, we retain the assumption that
the entrepreneur is risk-averse as in Townsend’s original model. Thus, we provide a more
general framework that is consistent with the kind of empirical evidence presented in Figure
1 (panel (b)) and at the same time is amenable to comparisons with recent iterations of the
CSV model (e.g. Winton (1995), Wang (2005)) and to other recent macro models of firm
finance that include risk-aversion (e.g. DeMarzo et al. (2012), Smith and Wang (2006)).

We seek to answer two main sets of questions. First, how do optimal contracts look like
in a CSV model that encompasses risk aversion and imperfect investor protection? Under
which conditions is a standard debt contract (SDC) optimal (if at all)? Second how do the
terms of the optimal contract change as the level of investor protection varies? what are the
effects of such variations on the entrepreneur’s welfare?

Our results can be summarized as follows. Optimal contracts may be catalogued in three
main families: (i) standard debt contracts, (ii) debt-like contracts with continuous repay-

4In the Czech Republic, bankruptcy law requires that secured creditors be repaid preferentially from 70%
of the value of the security, while the remaining 30% is to be added to the bankrupt’s assets from which
employees are then paid preferentially. Until early 2005, bankruptcy law in Barzil required that labor claims
and tax liabilities were repaid before secured creditors. A similar provision in Mexico’s bankruptcy procedures
was removed in 2003, but countries like Ecuador and Colombia mantain the low priority of secured creditors.
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ment functions and (iii) discountinuous debt-like contracts. This is in contrast with the risk-
neutral borrower case where only SDCs are optimal and with the risk-averse case under
perfect investor protection where the second family of contracts is not available.

We show that a SDC is optimal only if a well specified condition is satisfied, namely, if
the marginal value of financing is relatively high. Such condition is more easily satisfied
when the liquidation value of the project is high, when investor protection is relatively low
and when the entrepreneur’s degree of risk aversion is not too high; all of these predictions
are supported by the empirical evidence on firm finance (see, e.g., Acharya et al. (2011),
Williamson (1988)). Moreover, under some popular specifications of preferences, a SDC can
be optimal only if investor protection is imperfect.

Our comparative statics results show that for any continuous contract, the cost of funds
and the probability of bankruptcy are decreasing in the level of investor (i.e. creditor) pro-
tection, extending the main comparative statics result found in Krasa et al. (2008). We show
how this result can be extended to a fully dynamic setting. When a SDC is optimal, our
model implies that the borrower’s welfare increases with the level of investor protection,
but may increase or decrease with it if a SDC is implemented suboptimally.

To illustrate our analytical results, we parametrize the static model so as to reflect recent
estimates of bankruptcy costs and recovery rates. We show that lowering investor protection
can have considerable quantitative effects on the terms of the contract and on the entrepre-
neur’s welfare. Intuitively, since debt contracts are optimal only when the marginal value
of financing is high, it is not surprising that the borrower is willing to accept increasingly
higher costs of funding (via higher interest rates and higher bankruptcy probabilities).

The paper is organized as follows. We set up the contracting problem in section 2, briefly
describing the symmetric information contract first, and then proceeding to characterize op-
timal contracts under CSV with particular emphasis on continuous contracts. In section 3 we
present the quantitative analysis and a discussion of the main results. Section 4 concludes.

2 The contracting problem

In this section we lay out a static CSV problem in which investor protection plays an explicit
role. The model presented here is a blend of the ideas on CSV with risk aversion presented
in Townsend (1979), and the notion of imperfect investor found in Krasa et al. (2008).

2.1 Physical environment

The prototype model we consider is one with a risk neutral investor and a risk averse en-
trepreneur. The entrepreneur owns a production technology which can only be operated
by himself. Operating the technology (i.e. starting a project) requires investing one unit of
input and we assume that the entrepreneur has only 0 � (1� b) < 1 units. Thus to start
the project, she must raise b from the investor who, for simplicity is assumed to have zero
opportunity cost. The entrepreneur has no other investment alternatives.
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After project returns are realized, the entrepreneur repays R (ŝ, s) to the investor where s
is the true state of nature and ŝ is what the entrepreneur reports as the state. Under private
information, only the entrepreneur can costlessly observe the state of nature so the investor
would either rely on reports or verify them by paying a cost 0 � γ < 1, and may penal-
ize the entrepreneur if she misrepresents. Throughout the paper, we restrict the attention
to full commitment environments and to pure strategy equilibria.5 Since our model is sta-
tic, we also abstract from the difference between default, liquidation or reorganization, and
consider all these as bankruptcy situations.

Both agents are expected utility maximizers. In particular, the risk averse agent val-
ues consumption according to the twice continuously differentiable, strictly increasing and
strictly concave function u (�). Formally:

Assumption 1 u is C2 with u0 > 0 and u00 < 0.

Project returns are stochastic and equal to the state of nature, which is itself a continuous
random variable (r.v.) S with differentiable CDF H (�), dH (�) = h (�) . The support of S is
assumed to be bounded, Σ = [s, s̄] � R+, such that if s is a particular realization of the state,
0 < s � s � s̄ and ∞ > h (s) > 0 if s 2 int (Σ) .6 The distribution and support of S are
common knowledge.

Although in the traditional CSV literature the parameter γ is associated with protec-
tion of the investor, we now introduce an additional source of imperfect investor protection
through the limited liability clauses of the contract, much in the spirit of Krasa et al. (2008).
In particular, we will assume that:

Assumption 2 The legal system is such that, in any contract, after realization s, the entrepreneur
is bound to repay at most (1� η) s with η 2 [0, 1].

Notice that this limited liability clause also reflects the fact that the production tech-
nology is deemed useless to the investor without the entrepreneur. Next we describe the
contracting problem under symmetric information and then we study the more interesting
case of private information.

2.2 The case of symmetric information

In order to establish a benchmark, in this section we consider the problem under symmetric
information (i.e. γ = 0). Naturally, under symmetric information the repayment function
satisfies R (ŝ, s) = R (s) . The sequence of events in this setting is straightforward: the en-
trepreneur raises b from the investor, invests one unit of the input and when returns are
realized, repays R (s) to the investor according to the contract which we now define:

5These are perhaps substantive simplifications. Hvide and Leite (2010) show that the most important results
of the CSV model hold even in settings without commitment and with stochastic verification.

6The assumption that s > 0 is also in Townsend (1979) and allows us to better study reward functions that
satisfy Inada conditions. Moreover, this assumption reflects the fact that salvage values are typically positive.
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Definition 1 A contract under symmetric information is a schedule R (�) where R (s) is what the
risk-averse entrepreneur repays the investor when the state of nature is s.

There are a number of ways in which the contracting problem can be specified. Here we
proceed in the tradition of Townsend (1979), Gale and Hellwig (1985), and Williamson (1987)
and maximize the expected utility of the entrepreneur subject to the investor receiving at
least her reservation utility (in this case, simply the amount funded, b). For an appropriately
chosen weight vector, the solution to the program in (IRC)-(LLC) is also a solution to a
problem that maximizes the weighted average of the payoffs of the match subject to IR
constraints for both.7 Accordingly, the optimal contract for the entrepreneur is given by the
solution to:

max
R(�)

Eu [S� R (S)]

s.t. : ER (S) � b (IRC)
(1� η) s � R (s) � 0 8 s 2 Σ (LLC)

The first constraint is the individual rationality one for the investor (lender); given the
risk-neutrality assumption, it specifies that she must at least break even in expectation. The
second and third are limited liability constraints (LLCs). Under such an environment, the
optimal repayment function satisfies a constrained-optimal risk-sharing rule:8

u0 [s� R� (s)] = λ� � µ�1 (s)� µ�2 (s)
h (s)

where λ�, and µ�i (�) are the (optimal value) multipliers for (IRC) and (LLC), respectively.
Notice that when µ�2 (s) > 0, we obviously have µ�1 (s) = 0 and R� (s) = 0. On the other
hand, if µ�1 (s) > 0 then µ�2 (s) = 0 and R� (s) = (1� η) s. Finally, when the solution is
interior (µ�2 (s) = µ�1 (s) = 0 8 s), risk-neutrality implies that the investor provides full
insurance to the entrepreneur whose consumption is constant. Having characterized the
optimal benchmark contract, we now turn to the issue of costly state verification.

2.3 Costly state verification

The more interesting results arise when one introduces asymmetric information. Suppose
now that the entrepreneur can costlessly observe project returns but the investor must pay
a cost 0 < γ < 1 for using the legal system to verify returns. Then a reporting strategy for
the entrepreneur maps the state of nature into reports, fŝ (s)gs2Σ , and a verification region,
B, will now be part of the contract. The sequence of decisions and events is as follows:

7For a set up that maximizes the investor’s payoff subject to the entrepreneur’s IRC, see Krasa et al. (2008).
8Naturally, here and elsewhere, inequalities and equations involving random variables are assumed to

hold almost everywhere, i.e., with probability 1. We also assume throughout the paper that it is legitimate to
differentiate under the integral sign.
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Entrepreneur
obtains b, invests 1

unit of input
�!

s 2 Σ is realized,
entrepreneur reports ŝ(s),
investor verifies if ŝ 2 B

�!
Entrepreneur
repays R(ŝ, s)

to investor

As is standard in the CSV literature (e.g. Freixas and Rochet (2008)), we assume that
truthful reporting in the verification region is ensured by arbitrarily large misreporting
penalties, i.e., ŝ (s) = s 8 ŝ 2 B. We can now define a contract under private information:

Definition 2 A contract under CSV is a pair fR (�, �) , Bg where R (ŝ, s) is what the entrepreneur
repays when the state of nature is s and she reports state ŝ, and B � Σ is the set of reports ŝ for which
the investor chooses to use the legal system to verify project returns.

As usual in these type of contracting problems, the revelation principle allows us to fo-
cus only on direct revelation mechanisms that are incentive compatible, and to identify the
reports set with the support of the r.v. S. Thus, the optimal contract for the case when
verification is costly can be obtained by solving:

max
fB,R(�)g

Eu [S� R (S, S)] (P .1)

s.t. ER (S, S)� γ
Z

s2B
dH (s) � b (P .2)

u [s� R (s, s)] � u [s� R (ŝ, s)] 8 s, ŝ 2 Σ (P .3)
(1� η) s � R (s, s) � 0 8 s 2 Σ (P .4)

R
�
s, s0

�
= R

�
s, s00

�
8 s /2 B and s00, s0 2 Σ (P .5)

B � Σ (P .6)

The first constraint is the individual rationality one; it tells us that the investor should at
least break even in expectation, after accounting for expected verification costs. The second
constraint imposes incentive compatibility; it requires that the entrepreneur (or borrower)
prefers to report truthfully in every state. The third and fourth constraints stand for limited
liability and the fifth constraint requires that unverified payments depend only on the report
(UPC). In order to have an interesting problem, we introduce:

Assumption 3 E (S)� γ > b > s.

This assumption is sufficient to ensure that, at least for some values of η, an optimal
contract will give neither the manager nor the investor all of the firm’s returns. Notice that
when η = 0 the model effectively reduces to that in Townsend (1979) and when u (c) = c
(i.e. linear preferences) we have the CSV version of Krasa et al. (2008).9 Thus, the model
considered here contains in it some of the popular versions of the CSV framework while
specifying an explicit role for investor protection.

9Krasa et al. (2008) consider a model that imposes sequential rationality in the players’ strategies (the equi-
librium contract must be a PBE) so the CSV is a special case of their model.
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2.4 Optimal contracts

We now characterize optimal financial contracts under risk aversion, imperfect investor pro-
tection and costly state verification. We do so in steps, much in the spirit of Winton (1995):
we first introduce a series of lemmas that partially characterize the optimal contract and
then we rewrite the problem in a more convenient way that allows for an explicit solution
(formal proofs can be found in the appendix).

Lemma 1 In the optimal contract, for all ŝ /2 B, the repayment function is constant, i.e., R (ŝ, s) =
R̄ for some constant R̄.

Lemma 2 Under the optimal contract, in the verification region the repayment function is given by
R̂ (s) , with R̂ (s) < R̄ almost everywhere (a.e.) and R̂ (s) � R̄ everywhere.

The first result above is a straightforward implication of the unverified payments con-
straint, while the second mainly follows from incentive compatibility (and the fact that the
contract must be optimal). A more interesting result, which is a simple extension of Propo-
sition 3.2 in Townsend (1979) to the case of imperfect investor protection is:

Lemma 3 In the optimal contract, B is a lower interval.

Corollary 1 Whenever B 6= ?, 9 x 2 Σ such that ŝ � x ) ŝ 2 B, and ŝ > x ) ŝ /2 B.

We can now summarize the findings of lemmas 1-3 by saying that the optimal repayment
rule follows:

R (ŝ, s) =
�

R̂ (s) � R̄, if ŝ < x
R̄, if ŝ � x

Under such rule, incentive compatibility is always satisfied so that truthful reporting
is ensured, ŝ (s) = s 8 s, and the constraints (P .3) can be replaced. Moreover, since s >
x ) s /2 B, the limited liability constraints can also be replaced by the three constraints:
(1� η) x � R̄, (1� η) s � R̂ (s) and R̂ (s) � 0. Hence, the contracting problem can be
reformulated as:

max
fR̄,R̂(�),xg

Z x

s
u
�
s� R̂ (s)

�
dH (s) +

Z s̄

x
u [s� R̄] dH (s) (PP .1)

s.t.
Z x

s
R̂ (s) dH (s) + R̄ [1� H (x)]� γH (x) � b (PP .2)

(1� η) x � R̄, (1� η) s � R̂ (s) � 0 8 s � x (PP .3)

Necessary and sufficient conditions to find a solution for the program in (PP .1)-(PP .3)
are presented in the appendix as (2)-(8). These lead to the following classification of optimal
contracts:
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Theorem 1 (optimal contracts) Suppose that the contract Φ� =
�

R̄�, R̂� (�) , x�
	

solves the pro-
gram (PP .1)-(PP .3). Let the constant λ� be the optimal value of the multiplier on (PP .2). Then:

i) Either Φ� is the SDC of Gale and Hellwig (1985) with R̂� (x�) = (1� η) x� = R̄�, or
ii) Φ� is debt-like with s 7! R̂� (s) continuous and R̂�0 (s) = 1 for some s, or

iii) Φ� is debt-like but discontinuous at x� with R̂�0 (s) = 1 for some s � x�, R̂�0 (s) = 0 for some
s � x�, and R̄� > R̂� (x�) .

The proof of Theorem 1 is simply an application of the Maximum Principle and Arrow’s
Sufficiency Theorem to the program in (PP .1)-(PP .3). To gain some intuition about the
general form of the optimal contract, first consider the case of η = 0. In such case, R̂� (s) =
maxf0, s�max[0, u0(�1)(λ�)]g and, as in Winton (1995), the optimal contract can take one of
two forms. Naturally, if 0 > u0(�1) (λ�) or equivalently if u0 (0) < λ� the optimal contract
is a SDC since R̂� (x�) = x� = R̄�. Otherwise the optimal contract is debt-like (DL) with
R̂ (s) = 0 for some s and is discontinuous at R̄ (see left panel of Figure 1).

Figure1. Alternative optimal contracts

η = 0 η > 0

In the case of η > 0 the optimal contract specifies R̂� (s) = maxf0, s�max[ηs, u0(�1) (λ�)]g.
Again, if ηs > u0(�1) (λ�) 8 s � x, or, equivalently, if condition (1) is satisfied, we obtain the
SDC with R̂� (x�) = (1� η) x� = R̄�. Yet, in contrast with the case of η = 0, the optimal
contract need not be discontinuous when (1) is not satisfied. To see why, notice that when
η = 0 and standard debt is not optimal, whenever R̂� (s) > 0, it must be that R̂�0 (s) = 1. In
(s, R (s))-space, this means that the schedule R̂� (�) never intersects the upper LLC, which in
the case of η = 0 is simply the 45� line. On the other hand, when η > 0 and SDC is not opti-
mal, for R̂ (s) > 0 and low values of s, we have again that R̂�0 (s) = 1 but in this case R̂� (�)
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can intersect the upper LLC since its slope is now (1� η) < 1. In that case, we have that to
the right of the intersection and for s � x� the repayment function is R̂� (s) = (1� n) s as in
the SDC (see right panel of Figure 1).

The following remark will be useful below:

Remark 1 When the optimal contract is continuous, the cutoff value x� precisely pins down the
probability of verification, H (x�) , and the implied cost of funds (1� η) x� = R̄�.

We are now ready to extend one of the main results of Krasa et al. (2008) to the case of a
risk averse borrower and to general, continuous, optimal contracts:10

Proposition 1 Whenever the optimal contract is continuous and η 2 (0, 1), the probability of veri-
fication and the implied cost of funds are increasing in η and in γ.

The proof of Proposition 1 is a straightforward exercise of comparative statics. This result
unveils a tension between incentives and rewards for the borrower, in particular with respect
to η. Given that the optimal contract is continuous, a lower level of investor protection will
benefit the entrepreneur in (some or all of) the low states of nature, but will result in a higher
probability of verification (legal bankruptcy) and a higher implicit cost of funds. When the
optimal contract is discontinuous, the LLCs may not bind and therefore changes in η may
leave the terms of the contract unaffected.

2.5 Optimality of a SDC and entrepreneur’s welfare

Since the optimality of SDCs is a classic question in the CSV literature and the use of such
contracts is pervasive in practice, in this section we explore the role that (γ, η) play in satis-
fying the conditions required for their optimality. Moreover, we consider the welfare effects
of changes in η when debt contracts are optimal and when they are not.11

Notice that the proof of Theorem 1 provides a well specified condition for the optimality
of a SDC. In particular, a SDC is optimal only if:

λ� > u0 (ηs) (1)

For a given parametrization of H (�), including its support [s, s̄], this condition is a re-
striction on γ, η and the curvature of u (�) since the proof of Theorem 1 implies that:

(1� η)
R s̄

x� u0 [s� (1� η) x�] dH (s)
(1� η) [1� H (x�)]� γh (x�)

= λ�

10In Krasa et al. (2008), risk neutrality (of the borrower) implies that a SDC is the only optimal contract so
their comparative statics results naturally apply to SDCs only.

11The effect of increasing γ on the borrower’s welfare is always negative and is independent of optimality
considerations so we concentrate on η.
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Intuitively, this condition is more likely to be satisfied when bankruptcy costs are rela-
tively big, when the entrepreneur’s degree of risk aversion is moderate and when investor
protection is relatively low. Notice, that γ should not be "too big" either, for, otherwise,
the constraint set given by the IRC can be empty for some values of η (see Assumption 3).
Likewise, investor protection cannot be "too low" since λ� (η = 1) = 0.

Precise comparative statics results are difficult to obtain from condition (1) because λ�

depends directly and indirectly on the parameters through x� and some of these effects have
opposite signs.12 However, we are able to extract the following corollary from Theorem 1:

Corollary 2 Suppose that η = 0. Then if u satisfies limc!0 u0 (c) = ∞, a SDC is never optimal.

In other words, under such specification of preferences, standard debt can be optimal
only if η > 0. Functions satisfying this type of Inada condition include, for instance, the con-
stant elasticity of substitution (CES) family with elasticity parameter greater than or equal
to one (e.g. Cobb-Douglas), and the constant relative risk aversion (CRRA) function, one of
the most widely used in macroeconomics.

The results recorded in Theorem 1, through condition (1) and Corollary 2, relate to the ex-
isting literature in at least two ways. First, they complement the capital structure-theoretical
argument that higher liquidation values should favor debt as the choice contractual arrange-
ment (e.g., Williamson (1988)). In our model, it is true that for a given level of η, a higher
liquidation value s implies that condition (1) is more easily satisfied, facilitating the opti-
mality of a SDC. However, as the fraction of the liquidation value that the investor receives
decreases (η ! 0), the conditions under which debt is optimal become harder to satisfy�
limη!0 λ� (η) = 0 while limη!0 u0 (ηs) = ∞

�
.

Secondly, our result can be seen as theoretical support for the findings of Acharya et al.
(2011) who suggest a demand-side effect in the market for debt: if investors are well pro-
tected in debt contracts, risk-averse entrepreneurs are heavily damaged in the case of bank-
ruptcy, and would therefore find debt less attractive.13 We emphasize that this result has
no bearing with the aggregate level of firm finance, but merely with the relative appeal of
different financial contracts (i.e. the capital structure).

We now consider the welfare effects of changes in the level of investor protection. First,
we assume that condition (1) indeed holds. Define the vector θ = fb, γ, η, ρ, ψg where ρ
captures the borrower’s degree of risk aversion and ψ contains the parameters of the distri-
bution H (�). Since (1) implies that a cutoff value x completely characterize the SDC, we can

12For instance, even knowing that dx� (η) /dη and dx� (γ) /dγ are positive, simple inspection of (1) tells us
that we cannot easily sign dλ� (η) /dη or dλ� (γ) /dγ. Moreover, if ρ captures the borrower’s degree of risk
aversion, it is not hard to see that dx� (ρ) /dρ = 0 but we still cannot easily sign dλ� (ρ) /dρ.

13Among the first to consider seriously the posibility that strong investor protection may discourage debt
issuance are Rajan and Zingales (1995) although their analysis was far from conclusive. More recent stud-
ies provide sharper inference on the negative relationship between strong creditor rights and firm debt (e.g.,
Acharya et al. (2011), Ghoul et al. (2012)). This is in contrast with the supply-side hypothesis of credit provision
bourne out of the strong association observed in the data between investor protection and measures such as
credit-to-GDP (see, e.g., La Porta et al. (1998) and Djankov et al. (2007)).

11



reformulate the contracting problem as:

v (θ) = max
x2Σ

Z x

s
u [ηs] dH (s) +

Z s̄

x
u [s� (1� η) x] dH (s) (SD.1)

such that:

b �
Z x

s
(1� η) sdH (s)� γH (x) + (1� η) x [1� H (x)] (SD.2)

Once again, notice that Assumption 3 ensures that at least for some values of η 2 [0, 1],
the constraint set given by (SD.2) is nonempty. The following proposition analyzes the net
effect on the borrower’s welfare of an increase in η :

Proposition 2 When a SDC is optimal, the borrower’s welfare is decreasing in η.

Debt contracts are frequently observed in practice even though the analysis presented
here suggests that the conditions for their optimality can sometimes be fairly strict. More-
over, since SDCs are simple to understand and enforce, it is conceivable that policymakers
or regulators may find these arrangements attractive even if they are suboptimal from the
standpoint of the contracting parties. Thus, we now consider the welfare effects of imple-
menting SDCs when (1) is not satisfied:

Proposition 3 Suppose that a SDC is implemented but λ� < u0 (ηs). Then the borrower’s welfare
may increase or decrease with η.

The intuition of Proposition 3 is simple: when condition (1) is not satisfied, a SDC gives
the borrower too little consumption smoothing (across states) compared to what would be
optimal (come back to Figure 1). Therefore, since the partial effect of η (on utility) is greater
in the bankruptcy states, rising η gives the borrower more consumption in these states and
reduces the gap between optimal and actual consumption smoothing.

2.6 A dynamic extension

Although a complete study of dynamic CSV is beyond the scope of this paper, in this section
we show that in a simplified version of the repeated contracting problem, a result analogous
to the first part of Proposition 1 exists. Our main purpose here is to show that the distortion
generated by η > 0 remains even when the contract lasts more than one period.

Assume that time is discrete and the time horizon is infinite. For simplicity, suppose
that S has finite support Σ̃ = [s1, s2, ...sN] and that returns are i.i.d. across periods with
Pr(S = si) = πi 2 (0, 1) and ∑N

i=1 πi = 1. Finally, we assume that agents discount the future
at a common rate β.

Following Spear and Srivastava (1987) and Abreu et al. (1990), we note that there exists
a recursive representation for the extensive form of the repeated game. That is, the problem
can be reduced to a simple static variational problem where the entrepreneur’s expected
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utility, v, is used as a state variable that summarizes all relevant past information. Define v =
1

1�β ∑N
i=1 πiu (ηsi) and v̄ = sup u (c) / (1� β) , respectively as the minimum and maximum

attainable expected (lifetime) utility by the borrower. Define also w as the one-period-ahead
expected utility that a contract "promises" the entrepreneur.

Let J : [v, v̄]! R denote the value that the optimal contract delivers to the lender. Then
J and the optimal contract fB� (v) , R� (v, si) , w� (v, si) , si 2 Σ̃, v 2 [v, v̄]g can be character-
ized recursively by a functional equation that maximizes the lender’s present value expected
utility subject to incentive compatibility, limited liability and a promise keeping constraint
(PKC). Since this problem has been studied elsewhere (e.g. in Wang (2005)) and the inclu-
sion of imperfect investor protection poses no major technical challenges, we relegate the
details of the current formulation to the appendix.

Instead of trying to fully characterize optimal contracts, which is difficult task without
adding more structure to the problem, we focus on the verification set, and look for a result
that is the dynamic analogue of Proposition 1. To do so, we first reproduce a key proposition
found in Wang (2005) for the case of η = 0:

Proposition 4 (Wang (2005)) Assume v > �∞. Then there exists a value of the borrower’s ex-
pected utility, v̂ 2 [v, v̄], such that fs1, s2, ..., sN�1g � B� (v) 8 v � v̂.

Wang’s result implies that after the entrepreneur’s promised utility reaches a lower thresh-
old, the optimal contract specifies that the she is monitored in all income levels except the
highest. Such result is familiar in the firm financing literature and is analogous to e.g., that
of Clementi and Hopenhayn (2006), in which the investment project is liquidated for sure
after a sufficiently long sequence of low realizations of S. For our purposes, we let η > 0
and write the threshold found above as v̂ (η) . Now we can state our result:

Proposition 5 Assume that v > �∞. Then η2 > η1 ) v̂ (η2) > v̂ (η1) .

Thus, a lower level of investor protection expands the set of states [v, v̂ (η)] under which
the borrower is fully monitored (except for sN). Additionally, since both agents have the
same discount rate, [v, v̂ (η)] is a set of absorbing states so that v � v̂ (η) resembles bank-
ruptcy. That is, once v � v̂ (η), the borrower is fully monitored forever.

Notice that propositions 4 and 5 depend crucially upon the assumption that v > �∞. In
particular, Wang’s result does not admit reward functions that are unbounded from below
(e.g., CRRA). However, in our model, the fact that η > 0 implies that v > �∞ even for the
case of limc!0 u (c) = �∞.

3 Quantitative analysis

We now study the quantitative implications of the static model described in sections 2.3 -
2.5. Our main goal is to illustrate proposition 1 and the results of section 2.5, so we focus
on SDCs without loss of generality. That is, we solve the problem (SD.1)-(SD.2) and then
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test if condition (1) holds under various parametrizations, with special attention given to
the relationship between the degree of risk aversion and the remaining parameters of the
model. We also consider the relationship between investor protection and leverage, and the
quantitative effects of implementing SDCs when they are not optimal.

3.1 Benchmark parametrization

3.1.1 Functional forms and non-bankruptcy parameters

Throughout the quantitative analysis we use u (c) = (c1�ρ� 1)/1� ρ for the entrepreneur’s
payoff function, and for our benchmark parametrization we choose a risk aversion coeffi-
cient ρ = 0.5. This specification of preferences satisfies Assumption 1 and can deliver SDCs
as optimal contracts over a range of values for η (see section 3.2.1). Moreover, this function is
consistent with the DRRA hypothesis referred to in the introduction, and satisfies the Inada
condition limc!0 u0 (c) = ∞ implying that a SDC would never be optimal if investor pro-
tection were perfect (η = 0). For the distribution function we choose to follow Krasa et al.
(2008) and assume S � N

�
µ, σ2�. Table 1 summarizes our choices:

Table 1: Functional forms

Function Form

preferences u (c) =

(
c, investor
c1�ρ�1

1�ρ , entrepreneur

distribution h (s) = 1
σ
p

2π
exp

�
�1

2

�
s�µ

σ

�2
�

As for the parameters of the density function h (�), we set µ = 1.1 and σ = 0.18 which are
slightly higher than the average and standard deviation of the real return on the S&P500.14

As in Krasa et al. (2008) we choose these slightly higher figures to account for the fact that
we are considering an individual firm rather than an index. Finally, we set b = 0.57 which is
in between the asset:equity ratio of 2:1 required by loans from the Small Business Adminis-
tration (SBA) and the 2.45:1 mean leverage ratio reported by Kalemli-Ozcan et al. (2011) for
non-financial firms in the U.S. in the 2004-2009 period.

3.1.2 Bankruptcy related parameters

The two key parameters for our quantitative exercise are γ which captures bankruptcy costs
and η which measures the level of debtor protection. We build our baseline parametrization

14One more comment is in place regarding the distribution of returns. Recall from section 2.1 that we as-
sume that H has a bounded support and s > 0, which is obviously not the case for our choice of empirical
distribution. In order for the normal to be a good approximation to our H, we choose s = 0.2 and s̄ = 2 which,
along with µ = 1.1 and σ = 0.18 preserve the symmetry of the distribution and yield

R s̄
s h (s) ds = 0.999998.
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following the findings of a recent and influential paper by Bris et al. (2006) who report on
costs of bankruptcy and recovery rates for what their consider "the largest and most com-
prehensive sample of (U.S.) corporate bankruptcies assembled for an academic paper".

Importantly for our purposes, Bris et al. (2006) present lower and upper bounds for both
parameters, under what they label, respectively, as an "optimistic" and a "reported-only"
basis. For the average η, the authors report a range between 0.2 and 0.83 while for the aver-
age γ, they report a range between 38% and 80% of distributed post-bankruptcy assets.15,16

Interestingly enough, the parameter values for the benchmark specification in Krasa et al.
(2008) lie outside these two ranges since they choose η = 0.1 and γ = 0.1, resulting in bank-
ruptcy costs that are 25% of distributed assets. We settle for γ = 0.35 and η = 0.3 which
lie inside the ranges found by Bris et al. (2006) and, along with the parameter values and
functional forms described in the previous section, also deliver reasonable implied default
probabilities and interest rates. Our baseline parametrization is summarized in Table 2:

Table 2: Parameter values

Parameter Value Source
γ 0.35 Bris et al. (2006)
b 0.573 Kalemli-Ozcan et al. (2011)
η 0.3 Bris et al. (2006)
µ 1.1 S&P500 and Krasa et al. (2008)
σ 0.18 S&P500 and Krasa et al. (2008)

3.2 Results of the benchmark parametrization

Here we present some numerical results from the solution to the contracting problem un-
der the baseline parametrization. The first task is to check that under this benchmark the
condition for optimality of standard debt is satisfied; that is, we check that, at the optimum,
λ� = 4.09 > u0 (ηs) = (ηs)�1/2 = 4.08.

Our baseline scenario yields a cutoff value x� = 0.89 which in turn results in a bank-
ruptcy probability of 9.9%. Such probability is relatively high but is by no means unheard
of: Altman and Bana (2004) estimate default probabilities on bonds that are close to 15% for
some quarters in 1991 and 2002 in the U.S. This also suggests that our models is perhaps

15Given the heterogeneity of bankruptcy cases, we would very much like to work with the median rather
than the average. However, averages allow us to recover some figures from the original data and ensure
internal consistency which the median does not. For instance, in Table III of Bris et al. (2006) the average
optimistic recovery rate before expenses is 80% of total assets. This is consistent with the average recovery rate
of 51% after expenses reported on their table XIII, and with the average costs being 38% and 8% of bankrupcty
assets and total assets, respectively. On the other hand their reported median recovery rate before expenses is
38%, and after expenses is 70%; something altogether problematic for the purposes of our exercise.

16An alternative source of estimates for η is Blazy et al. (2010) who estimate that recovery rates (η) range
between 76% (senior creditors) and 10% (junior creditors) in Germany and between 31% and 6% in the U.K.
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better suited for the study of bank loans to small or relatively new firms since bond issuance
may require to establish a reputation of creditworthiness (low default) first.

Next, from the value of x� we can compute expected distributed bankruptcy assets:

(1� η)E [s j s � x�] = (1� η)

R x�

s sh (s) dsR x�
s h (s) ds

= 0.57

and bankruptcy costs as a fraction of such assets: γ f(1� η)E [s j s � x�]g�1 = 0.61, which
stands around the midpoint of the range reported by Bris et al. (2006). Finally, the benchmark
exercise yields a real rate of interest of (1� η) x�b�1 � 1 = 8.8% which is some 1.5% above
the average interest rate on small loans reported by the SBA.

We now carry out some simple comparative statics in a neighborhood of the baseline
scenario. In particular we study how the terms of the contract and the borrower’s welfare
change as our parameter of interest, η, varies. The comparative statics exercise is limited,
however, by the fact that optimality of SDC requires a tight IRC (see section 3.2.1). That is,
we are able to vary the level of investor protection only up to about 3% before the constraint
set given by (SD.2) becomes empty.

Figure 2. Comparative statics when a SDC is optimal
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The three panels of Figure 2 are simply an illustration of propositions 1 and 2. They
show, for instance, that a decrease of 2% in the level of investor protection (i.e. from η = 0.3
to η = 0.306) increases the probability of bankruptcy by about 5 percentage points (from
around 10% to 15%), increases the interest rate by about 320 basis points and lowers the
borrower’s value function by almost 4%.

Thus, moderate decreases in creditor protection have substantial quantitative effects on
the terms of the contract and the welfare of the borrower. One must keep in mind, however,
that such dramatic responses to modest changes in investor protection are largely driven by
the tightness of the constraint (SD.2), which in turn is required by condition (1). In other
words, given that a SDC is only optimal when the marginal value of financing is very high, it
is not surprising that the borrower is willing to incur in increasingly higher costs of funding
(via higher interest rates and higher bankruptcy probabilities).
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3.3 Risk aversion and optimality of standard debt

In the previous subsection, we chose a parametrization that guaranteed the optimality of a
SDC. We now test if this condition holds for alternative combinations of the parameters and
explore the quantitative consequences of implementing such contracts when they fail to be
optimal. In particular, we study the role of γ, η and ρ in satisfying (1), while keeping µ, σ, b
as in the baseline exercise:

Figure 3. When is a SDC optimal?
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These results illustrate the highly non-linear relationships between η and ρ, on the one
hand, and γ and ρ on the other, in delivering conditions for the optimality of SDCs. The
effect is particularly dramatic in the case of (η, ρ) : for condition (1) to be satisfied even at a
relatively low value ρ = 0.2, we already require that the borrower keeps at least 25% of the
assets in the event of bankruptcy. In fact, given γ = 0.35 and b = 0.57, any value of ρ > 0.4
requires that η > 0.3 for a SDC to be optimal.17 On the other hand, with these values of γ, b,
the constraint set given by IRC (SD.2) is empty for any η � 0.31 (see left panel of Figure
4). This suggests that as the entrepreneur becomes more risk averse, it becomes increasingly
hard to satisfy (1) without varying any of the remaining parameters.

What if a SDC is implemented but condition (1) is not satisfied? To explore such pos-
sibility, we parametrize the model with σ, µ, b as in the baseline and solve the contracting
problem for γ = 0.3, ρ = 1.5 and a grid of η 2 [0.1, 0.3] all of which ensure that λ� < u0 (ηs).
Figure 5 summarizes the comparative statics results:

Figure 5. Comparative statics when a SDC is not optimal
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17For instance, u (c) = ln c requires η � 0.3064, which results in a vey tight constraint, with λ� � 18.3.
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It is perhaps not surprising that the implications of Proposition 1 remain valid. The more
provocative result, though, is the fact that, using values for (η, γ) that lie inside the intervals
reported by Bris et al. (2006), and a value for ρ that is used in many macroeconomic studies,
the borrower’s welfare is not strictly decreasing in the level of debtor protection, illustrating
the content of Proposition 3.

3.4 Investor protection and leverage

What if we want to consider the case of η � 0.31? This requires alternative values for the
remaining parameters. Here we analyze in particular the relationship between leverage and
investor protection. Although this exercise is independent of risk aversion, the issue has not
been addressed by the CSV literature and therefore we think it is relevant to pursue it here.
We want to find out how b, which measures the fraction of debt, needs to be varied if we
want to consider σ, γ, µ as in the baseline parametrization and η � 0.31.

Figure 4. The IR-constraint set, maximum leverage and investor protection
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In the right panel of Figure 4 we have defined b+ (η) as the maximum fraction of debt
(inverse of the leverage ratio) consistent with η, such that the constraint set given by (SD.2)
is non-empty. Our model, thus, gives some analytical background to the recent empirical
evidence provided by Pereira and Ferreira (2011) and Cheng and Shiu (2007) who look at
panel data regressions and conclude that firms in countries with better creditor protection
have higher leverage.

4 Concluding remarks

Building upon the existing literature, in this paper we have presented a simple theory of
debt when there is costly verification, imperfect investor protection and a risk averse entre-
preneur. These features make our model more amenable to informationally opaque, small
and medium sized firms with concentrated ownership or contingent compensations.
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Since much of the theoretical literature on investor protection focuses on monitoring
costs (γ), a natural avenue for future research is the study of our main parameter of in-
terest, η. Two extensions that come to mind are allowing for η to be either uncertain when
financial contracts are signed (i.e. stochastic) and/or endogenously determined by the con-
tracting parties. This last extension would clearly have political economy ramifications,
another promising area of research.

A Appendix

A.1 Proof of Theorem 1

Proof of Lemma 1. The UPC implies that unverified payments must only depend on the
message, that is, R (ŝ, s) = R (ŝ) for any ŝ /2 B. Therefore, the entrepreneur will choose
s̃ = arg minŝ/2B R (ŝ) so the contract may as well set R (s̃) = R̄.

Proof of Lemma 2. First, notice that ŝ (s) = s 8 s 2 B so that in the verification region
R (ŝ, s) = R̂ (s) for some R̂ (�) . Now, for s 2 B, R̂ (s) > R̄ can never be optimal since in this
case the entrepreneur will prefer to misreport and pay R̄ (the ICC is not satisfied). Next, if
R̂ (s) = R̄ on a set of positive measure, then the investor will inefficiently pay verification costs
when she does not need to so the contract cannot be optimal. This implies that R̂ (s) = R̄
can hold only for a zero-measure event (i.e. a single point). Therefore, R̂ (s) < R̄ a.e. and
R̂ (s) � R̄ everywhere.

Proof of Lemma 3. We first show that B is a connected set. This part of the proof is
constructive and is a special case of item (iii) of Proposition 1 in Winton (1995). Without
loss of generality, suppose that the contract has as verification set a disjoint interval B =
[s, x] [ [s1, s2] for some s̄ > s2 > s1 > x > s, and repayment function R̂ (s) for ŝ 2 B and
R (ŝ, s) = R̄ for ŝ /2 B. The investor’s payoff from this contract is then given by:

V =
Z x

s
R̂ (s) dH (s) + R̄ [H (s1)� H (x)]

+
Z s2

s1

R̂ (s) dH (s) + R̄ [1� H (s2)]� γ [H (s2)� H (s1) + H (x)]

and the entrepreneur’s payoff from the contract is given by:

U =
Z x

s
u
�
s� R̂ (s)

�
dH (s) +

Z s1

x
u [s� R̄] dH (s)

+
Z s2

s1

u
�
s� R̂ (s)

�
dH (s) +

Z s̄

s2

u [s� R̄] dH (s)

Now, incentive compatibility then requires that for s 2 [s1, s2] , R̄ � R̂ (s). If R̄ = R̂ (s) there
is nothing to prove so suppose that R̄ > R̂ (s) . Now construct a new contract (M). To do so,
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notice that R̄ > R̂ (s) implies:Z x

s
R̂ (s) dH (s) + R̄ [1� H (x)]� γH (x) > V

Therefore, there exists a contract with BM = [s, x], RM (s, s) = R̂ (s) for ŝ 2 BM and RM 2
[R̂ (s) , R̄) satisfying:

VM =
Z x

s
R̂ (s) dH (s) + RM [1� H (x)]� γH (x) = V

Such a contract is feasible since the initial contract implied that for s 2 [s1, s2] , (1� η) s �
R̂ (s) > R̄ > RM. It is also incentive compatible since the repayment function is constant for
all ŝ /2 B and satisfies RM � R̂ (s). Under such a contract, the concavity of u guarantees that:

UM =
Z x

s
u
�
s� R̂ (s)

�
dH (s) +

Z s̄

x
u
�
s� RM

�
dH (s) � U

Thus, we have found a contract that is feasible, incentive compatible and that weakly im-
proves the entrepreneur’s welfare, while leaving the investor as well off. Summarizing,
when the contract specifies B as a disjoint interval, the contract fails to be optimal.

We now show that B is in fact a lower interval. It suffices to show that B 6= ?) s 2 B and we
proceed by contradiction. Suppose that B 6= ? but s /2 B. Since s /2 B, we have R (s, s) = R̄,
while incentive compatibility requires R̄ � R̂ (s) . On the other hand, limited liability re-
quires (1� η) s � R̄. Since (1� η) s � (1� η) s 8 s 2 Σ, it follows that R̄ = R̂ (s) = (1� η) s
which in turn implies that B = ?, a contradiction.

Proof of Theorem 1. In the reformulated problem (PP .1)-(PP .3) the IRC will bind along
the optimal path. Moreover, the first and second LLCs will also bind for some s. It is easy
to see that whenever these constraints bind, the rank of their Jacobian matrix equals its
number of rows so that the rank constraint qualification is satisfied. Thus, the problem is
equivalent to problem (43) on page 102 of Caputo (2005) with no differential constraints.
The Maximum Principle (e.g. Theorem 4.4 in of Caputo (2005)) then implies that there exist
constants λ > 0, φ � 0 and nonnegative, continuous functions µ1 (�) , µ2 (�) such that the
following conditions hold:

� µ1 (s) =
�

u0
�
s� R̂ (s)

�
� λ

	
h (s)� µ2 (s) 8 s � x (2)

�φ =
Z s̄

x
u0 [s� R̄] dH (s)� λ [1� H (x)] (3)

�φ (1� η)

h (x)
= u

�
x� R̂ (x)

�
� u [x� R̄] + λ

�
R̂ (x)� R̄� γ

�
(4)
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along with complementary slackness conditions:

0 = λ

�Z x

s
R̂ (s) dH (s) + R̄ [1� H (x)]� γH (x)� b

�
(5)

0 = φ [(1� η) x� R̄] (6)
0 = µ1 (s)

�
(1� η) s� R̂ (s)

�
(7)

0 = µ2 (s) R̂ (s) (8)

where λ, φ, µ1 (�) , µ2 (�) are, respectively, the multipliers on the IRC and LLCs. Now suppose
that fR̄�, R̂� (�) , x�, λ�, φ�, µ�1 (�) , µ�2 (�)g is a solution to the system comprising (2)-(8) and
complementary slackness. Then the triplet fR̄�, R̂� (�) , x�g achieves the unique maximum of
(PP .1). To see this, notice that the constraint set is convex and the "maximized Hamiltonian"
of the problem above H(s, R̂ (s) , R̄�) is strictly concave in R̂ for every s 2 Σ. Thus, Arrow’s
Sufficiency Theorem (see, e.g. Theorem 6.4 in Caputo (2005)) immediately applies. We now
classify optimal contracts into families:

i) If µ�1 (s) > 0 8 s � x�, which clearly implies µ�2 (s) = 0, then (7) tells us that (1� η) s =
R̂� (s) 8 s � x�. Since Lemma 2 proves R̂� (s) � R̄� everywhere and LLC requires
(1� η) x� � R̄� we have that R̂� (x�) � R̄� and R̂� (x�) � R̄� from which it follows
that R̂� (x�) = (1� η) x� = R̄� (i.e. φ > 0). It is easy to see from (2) that µ�1 (s) > 0
, u0 (ηs) < λ�. Thus, only if λ� > u0 (ηs) holds, a SDC solves the problem (PP .1)-
(PP .3) which is equivalent to problem (P .1)-(P .5).

ii) Now suppose that µ�1 (s) = 0 for some s < x�. As long as µ�1 (x
�) > 0 the contract

is continuous since R̂� (x�) = (1� η) x� = R̄�. Using again condition (2) we know
µ�1 (s) = 0 , u0 (ηs) � λ�. There are two cases to consider. First suppose that
µ�2 (s) = 0 8 s � x� which holds iff λ� > u0 (s) . Then the optimal contract spec-
ifies that R̂� (s) > 0 8 s, R̂� (s) = s � u0(�1) (λ�) whenever u0 (ηs) � λ� > u0 (s)
and R̂� (s) = (1� η) s when λ� > u0 (ηs) . Next suppose that µ�2 (s) > 0 for some
s which implies that s < u0(�1) (λ�). Then the optimal contract specifies R̂� (s) = 0
whenever u0 (s) > λ�, R̂� (s) = s � u0(�1) (λ�) whenever u0 (ηs) � λ� > u0 (s) and
R̂� (s) = (1� η) s as long as λ� > u0 (ηs) . That R̂�0 (s) = 1 for some s follows immedi-
ately from R̂� (s) = s� u0(�1) (λ�) since λ� is unique and independent of s.

iii) Finally, suppose that µ�1 (s) = 0 8 s � x� and µ�2 (s) = 0 for some s � x�. Then (2)
implies that (1� η) x� > R̂� (x�) = x� � u0(�1) (λ�) . Thus, LLC and Lemma 2 imply
that the optimal contract is discontinuous, i.e., R̄� > R̂� (x�). To see this, suppose that
it is continuous and find a contradiction. Continuity implies R̂� (x�) = R̄� < (1� η) x�

which in turn implies that φ = 0. But then (4) then implies that 0 = �λγ. This can
only hold if λ = 0 but then (3) would require

R s̄
x� u0 [s� R̄�] dH (s) = 0, a contradiction

since R̄� < (1� η) x�.
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A.2 Proof of propositions 1, 2 and 3

Proof of Proposition 1. First, notice that continuity of the contract implies that u
�
x� R̂ (x)

�
�

u [x� R̄] = R̂ (x)� R̄ so that condition (4) reduces to �φ (1� η) = �λγh (x) . Combining
this result with (3) and writing x� (η) , λ� (η) to explicitly account for the dependence on η
we arrive at:

(1� η)
R s̄

x�(η) u0 [s� (1� η) x� (η)] dH (s)

(1� η) [1� H (x� (η))]� γh (x� (η))
= λ� (η) (9)

which implies that λ� (η) > 0 given η 2 (0, 1). Thus, condition (5) requires:

(1� η)
Z x�(η)

s
sdH (s)� γH (x� (η)) + (1� η) x� (η) [1� H (x� (η))] = b (10)

Next, totally differentiate (10) w.r.t. η:

0 = �
Z x�(η)

s
sdH (s)� γh (x� (η))

dx�

dη
� x� (η) [1� H (x� (η))] + (1� η)

dx�

dη
[1� H (x� (η))]

= �
Z x�(η)

s
sdH (s) +

dx�

dη
f(1� η) [1� H (x� (η))]� γh (x� (η))g

and using (9) and the fact that λ� (η) > 0, we conclude that:

dx�

dη
=

R x�(η)
s sdH (s)

(1� η) [1� H (x� (η))]� γh (x� (η))
> 0

since the probability of bankruptcy, given by H (x�) , and the repayment function, (1� η) x�,
are both strictly increasing in x�, the first part of the proposition follows. Now write x� (γ)
to explicitly account for the dependence on γ and (10) as:

(1� η)
Z x�(γ)

s
sdH (s)� γH (x� (γ)) + (1� η) x� (γ) [1� H (x� (γ))] = b

differentiating w.r.t. γ yields:

dx�

dγ
=

H (x� (γ))
(1� η) [1� H (x� (γ))]� γh (x� (γ))

> 0

and since λ� (γ) > 0, the second part of the proposition trivially follows.

Proof of Proposition 2. Let θ�η = fb, γ, ρ, ψg . Applying the Envelope theorem to (SD.1)-
(SD.2) we have:

dv
�
θ�η; η

�
dη

=
Z x�

s
u0 [ηs] sdH (s) + x�

Z s̄

x�
u0 [s� (1� η) x�] dH (s)

�λ�
�Z x�

s
sdH (s) + x� [1� H (x�)]

�
=

Z x�

s

�
u0 (ηs)� λ�

�
sdH (s) + x�

�Z s̄

x�
u0 [s� (1� η) x�] dH (s)� λ� [1� H (x�)]

�
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now using the expression for λ� and after a minor algebraic manipulation we get:

dv
�
θ�η; η

�
dη

=
Z x�

s

�
u0 (ηs)� λ�

�
sdH (s)� x�

γh (x�)
R s̄

x� u0 [s� (1� η) x�] dH (s)
[1� H (x�)] (1� η)� γh (x�)

now, the last term of this expression is clearly negative since λ� > 0 ) [1� H (x�)] (1� η)�
γh (x�) > 0. Moreover, the first term is also negative since the optimality of SDCs implies
that 8 s � x�, u0 (ηs) < λ. Thus, we conclude that dv

�
θ�η; η

�
/dη < 0.

Proof of Proposition 3. It suffices to show that:Z x�

s

�
u0 (ηs)� λ

�
sdH (s) > x�

γh (x�) λ

(1� η)

for some parametrization that satisfies assumptions 1-3 and violates condition (1). Con-
sider the case used in Corollary 2, that is, suppose that limc!0 u0 (c) = ∞ and η = 0.
Then obviously λ� < u0 (ηs) and assumptions 1-3 are satisfied but

R x�

s [u0 (ηs)] sdH (s) >
λ� [H (x�) + x�γh (x�)].

A.3 The dynamic contracting problem and propositions 4 - 5

In this section we spell out the details of the dynamic extension of the contracting problem.
The first modification we introduce is that, because the contract now lasts more than one
period, we allow for the transfers between agents to be positive or negative and assume that
the lender has instant access to a (limited) credit market. Thus, the lower LLC is relaxed to
a negative number, �s0 with s0 > 0, while the upper LLCs remain unchanged.

At time t = 0 the lender makes a take-it-or-leave-it offer to the entrepreneur with the
terms of a financial contract. Each t is associated with a history of events ht = fh1, h2, ..., htg 2
Ht where Ht is the set of all possible such histories and without loss of generality ht =
∅ 8 t � 0. Under CSV, histories include all past announcements by the entrepreneur and the
list of previous periods in which verification took place. That is, the typical component of a
particular history is a pair ht = fŝt, qtgwhere ŝt is what the entrepreneur reports as the state
and qt = 1, if monitoring occurred in period t, and qt = 0 otherwise. Moreover, under CSV
the contract also includes B

�
ht�1� , a set of states in which the lender verifies after observing

history ht�1. In the symmetric information case (γ = 0), ht = st = fs1,s2, ..., stg.
In order to proceed to the formulation of the problem, we need some definitions:

Definition 3 A reporting strategy for the entrepreneur, Ẑ, is a sequence of functions that maps
histories up to t into reports of the state, i.e.: Ẑ =fŝt

�
ht�g∞

t=1 = fŝt
�
ht�1, st

�
g∞

t=1.

We note that in the current environment the revelation principle still holds so Ẑ �Σ̃.18 As
in the static problem, large penalties prevent the entrepreneur from misrepresenting in the
verification region. Thus, qt = 1 ) ht = fst, 1g and qt = 0 ) ht = fŝt, 0g.

18A formal proof of this assertion can be found in Monnet and Quintin (2005).

23



Definition 4 A verification strategy for the lender is a sequence of set-valued mappings fBt(ht�1)g∞
t=1

assigning to each history ht�1 a verification region, i.e., a set of states of nature for which verification
occurs.

The set Bt is the natural, time-varying extension of the set B in section 2.3. We can now
define a contract under dynamic CSV:

Definition 5 A dynamic contract under CSV is a sequence of mappings σ = fBt(ht�1), Rt(ht)g∞
t=1,

assigning current period verification strategies and repayments to each history.

Notice that Bt(ht�1) � Σ̃ depends upon the history of events up to t � 1 as verifica-
tion decisions are independent of the current period realization of the state. On the other
hand, even though the form of Rt(ht) may be known ex-ante, it is contingent on the current
realization of the state and therefore depends upon the history up to t.

Next, define the payoffs from the strategies in the subgame starting from ht given a con-
tract σ and a reporting strategy Ẑ =fŝt

�
ht�g∞

t=1 :

Q
�
ht, Ẑ, σ

�
=

∞

∑
j=1

βj�1

8<: N

∑
i=1

πi

h
Rt+j(ht+j�1, ŝt+j

�
ht�1, si,t+j

�
)� b

i
� ∑

i j Bt+j(ht+j�1)

πiγ

9=;
for the lender, and:

V
�
ht, Ẑ, σ

�
=

∞

∑
j=1

βj�1
N

∑
i=1

πi

h
u(si,t+j � Rt+j(ht+j�1, ŝt+j

�
ht�1, si,t+j

�
))
i

dH (s)

for the entrepreneur. We can now define incentive compatible contracts.

Definition 6 A contract σ is incentive compatible if V(ht,Z, σ) � V(ht, Ẑ,σ) 8 Ẑ 8 ht

In an optimal contract the lender maximizes her time 0 expected utility, the entrepreneur
is assured a continuation value v at time 1, repayment functions are feasible, and incentive
compatibility holds at each history. Formally:

Definition 7 An optimal contract, σ, maximizes Q(h0,Z,�) subject to V
�
h0,Z,σ

�
= v, feasibility

and V(ht,Z, σ) � V(ht, Ẑ,σ) for all ht and all Ẑ

Define v = 1
1�β ∑N

i=1 πiu (ηsi) and v̄ = sup u (c) / (1� β) = 1
1�β ∑N

i=1 πiu [s0 � (1� η)si] ,
respectively as the minimum and maximum attainable expected (lifetime) utility by the bor-
rower. For each v 2 [v, v̄] consider the problem: maximize the lender’s time 0 payoff subject
to the entrepreneur getting minimum payoff v, and subject to feasibility and incentive com-
patibility constraints. Denote the solutions to this problem:

J (v) =max
n
J j 9 σ such that V

�
h0,Z,σ

�
= v and Q

�
h0,Z, σ

�
= J

o
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then all the points (v,J (v)) constitute the Pareto frontier. Notice that v 7! J (v) must be
non-increasing, for, otherwise, the lender could simply offer the entrepreneur more and be
better off. The recursive form of the contract then becomes σ = fB(v), R (v, si) , w (v, si) , si 2
Σ̃, v 2 [v, v̄]g where R (v, si) is the repayment schedule and w (v, si) is next period promised
utility when the current expected payoff for the borrower is v and the state of nature is si.
The dynamic contracting problem can now be written in recursive form:

J (v) = max
R(v,�),w(v,�),B(v)

8<: N

∑
i=1

πi [R (v, si)� b+ βJ (w (v, si))]� ∑
ijsi2B(v)

πiγ

9=; (11)

subject to :

u(si � R (v, si)) + βw (v, si) � u(si � R
�
v, sj

�
) + βw

�
v, sj

�
(12)

8 s 2 Σ̃ and 8 sj /2 B(v)

v =
N

∑
i=1

πi [u(si � R (v, si)) + βw (v, si)] (13)

�s0 � R (v, si) � (1� η) si 8 si 2 Σ̃ (14)

B (v) � Σ̃ (15)

where (12) are the dynamic analogues to the set of incentive constraints (P .3), (14) are the
modified LLCs and (13) is the so-called promise-keeping constraint (PKC). From this for-
mulation of the problem it is easy to obtain the results of propositions 4 and 5 in the main
text.
Proof of Proposition 5. Suppose that the borrower has been promised v. It is enough to
show that if sN�1 /2 B� (v) the contract fails to be optimal. Suppose that sN�1 /2 B� (v) ;
and suppose that the borrower uses a strategy that calls her to report sN�1 when when she
observes sN. Then the PKC is necessarily violated, for, the minimum expected utility that the
borrower can obtain is ∑N�2

i=1 πiu (ηsi) +∑N
i=N�1 πiu [si � R� (v, sN�1)] + βw� (v, sN�1). But,

since w� (v, sN�1) � v and R� (v, sN�1) � (1� η) sN�1 (by (14)), this lower bound cannot be
less than:

N�1

∑
i=1

πiu (ηsi) + πNu [sN � (1� η) sN�1] + βv >
N

∑
i=1

πiu (ηsi) + βv = v

So define the left hand side of the first inequality to be the threshold v̂ (η) . Clearly then, for
any v � v̂ (η), fs1, s2, ..., sN�1g * B� (v) is not incentive compatible. It is now easy to see
that η 7! v̂ (η) is increasing so that the statement of the proposition follows.
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